Скачать презентацию на тему виды памяти компьютера. Внешняя память компьютера











1 из 10

Презентация на тему: Виды компьютерной памяти

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

№ слайда 3

Описание слайда:

Внутренняя и внешняя память Работая с информацией, человек пользуется не только своими знаниями, но и книгами, справочниками и другими внешними источниками. В главе 1 «Человек и информация» было отмечено, что информация хранится в памяти человека и на внешних носителях. Заученную информацию человек может забыть, а записи сохраняются надежнее. У компьютера тоже есть два вида памяти: внутренняя (оперативная) и внешняя (долговременная) память.

№ слайда 4

Описание слайда:

Внутренняя память - это электронное устройство, которое хранит информацию, пока питается электроэнергией. При отключении компьютера от сети информация из опера тивной памяти исчезает. Программа во время ее выполнения хранится во внутренней памяти компьютера. Сформулиро ванное правило относится к принципам Неймана. Его называют принципом хранимой программы. Внешняя память - это различные магнитные носители (ленты, диски), оптические диски. Сохранение информации на них не требует постоянного электропитания.

№ слайда 5

Описание слайда:

№ слайда 6

Описание слайда:

Структура внутренней памяти компьютера Все устройства компьютера производят определенную работу с информацией (данными и программами). А как же представляется в компьютере сама информация? Для ответа на этот вопрос «заглянем» внутрь машинной памяти. Структуру внутренней памяти компьютера можно условно изобразить так, как показано на рис. 2.4. Наименьший элемент памяти компьютера называется битом памяти. На рис. 2.4 каждая клетка изображает бит. Вы видите, что у слова «бит» есть два значения: единица измере ния количества информации и частица памяти компьютера. Покажем, как связаны между собой эти понятия. В каждом бите памяти может храниться в данный момент одно из двух значений: нуль или единица. Использование двух знаков для представления информации называется двоичной кодировкой Данные и программы в памяти компьютера хранятся в виде двоичного кода Один символ двухсимвольного алфавита несет 1 бит информации. В одном бите памяти содержится один бит информации

№ слайда 7

Описание слайда:

Битовая структура определяет первое свойство внутренней памяти компьютера - дискретность. Дискретные объекты составлены из отдельных частиц. Например, песок дискретен, так как состоит из песчинок. «Песчинками» компьютерной памяти являются биты. Второе свойство внутренней памяти компьютера - адресуемость. Восемь расположенных подряд битов памяти образуют байт. Вы знаете, что это слово также обозначает единицу количества информации, равную восьми битам. Следовательно, в одном байте памяти хранится один байт информации Во внутренней памяти компьютера все байты пронумерованы. Нумерация начинается с нуля.

№ слайда 8

Описание слайда:

Носители и устройства внешней памяти Устройства внешней памяти - это устройства чтения и записи информации на внешние носители. Информация на внешних носителях хранится в виде файлов. Что это такое, подробнее вы узнаете позже. Важнейшими устройствами внешней памяти на современных компьютерах являются накопители на магнитных дисках (НМД), или дисководы. Кто не знает, что такое магнитофон? На магнитофон мы привыкли записывать речь, музыку, а затем прослушивать записи. Звук записывается на дорожках магнитной ленты с помощью магнитной головки. С помощью этого же устройства магнитная запись снова превращается в звук. НМД действует аналогично магнитофону. На дорожки диска записывается все тот же двоичный код: намагниченный участок - единица, ненамагниченный - нуль. При чтении с диска эта запись превращается в нули и единицы в битах внутренней памяти. К магнитной поверхности диска подводится записывающая головка (рис. 2.5), которая может перемещаться по радиусу. Во время работы НМД диск вращается. В каждом фиксированном положении головка взаимодействует с круговой дорожкой. На эти концентрические дорожки и производится запись двоичной информации.

№ слайда 9

Описание слайда:

Другим видом внешних носителей являются оптические диски (другое их название - лазерные диски). На них используется не магнитный, а оптико-механический способ записи и чтения информации. Сначала появились лазерные диски, на которые информация записывается только один раз. Стереть или перезаписать ее невозможно. Такие диски называются CD-ROM - Compact Disk-Read Only Memory, что в переводе значит «компактный диск - только для чтения». Позже были изобрете ны перезаписываемые лазерные диски - CD-RW. На них, как и на магнитных носителях, хранимую информацию можно стирать и записывать заново. Носители, которые пользователь может извлекать из дисковода, называют сменными. Наибольшей информационной емкостью из сменных носителей обладают лазерные диски типа DVD-ROM - видео диски. Объем информации, хранящейся на них, может достигать десятков гигабайтов. На видеодисках записываются полноформатные видеофильмы, которые можно просматривать с помощью компьютера, как по телевизору.

№ слайда 10

Описание слайда:

Коротко о главном В состав компьютера входят внутренняя память и внешняя память. Исполняемая программа хранится во внутренней памяти (принцип хранимой программы). Информация в памяти компьютера имеет двоичную форму Наименьшим элементом внутренней памяти компьютера является бит. Один бит памяти хранит один бит информации: значение 0 или 1. Восемь подряд расположенных битов образуют байт памяти. Байты пронумерованы, начиная с нуля. Порядковый номер байта называется его адресом. Во внутренней памяти запись и чтение информации про исходят по адресам. Внешняя память: магнитные диски, оптические (лазерные) диски - CD-ROM, CD-RW, DVD-ROM.

Слайд 1

Компьютерная память
Учитель информатики МКОУ «СОШ № 9 города Аши (с профессиональным обучением)» Чертова О.В.

Слайд 2

Как устроена память?
Память построена из двоичных запоминающих элементов – битов, объединенных в байты. Все байты пронумерованы. Номер байта называется его адресом. Байты могут объединяться в ячейки, которые называются словами.

Слайд 3

Виды памяти
Внутренняя Внешняя

Слайд 4

Внутренняя память
Оперативная память Кэш-память Специальная память

Слайд 5

Оперативная память (ОЗУ)

ОПЕРАТИВНАЯ ПАМЯТЬ компьютера, ЗУ, хранящее информацию в цифровом виде. Из ОП процессор компьютера берет программы и исходные данные для обработки, в нее же записываются полученные результаты. Свое название ОП получила за быстродействие; процессору практически не приходится ждать при чтении и записи данных. Для ОП используют и обозначение RAM, Random Access Memory – память с произвольным доступом. При выключении компьютера содержимое ОП обычно стирается.

Слайд 6

Оперативная память (ОЗУ)
Основные характеристики: Объем памяти определяется максимальным количеством информации, которая может быть помещена в эту память, и выражается в килобайтах, мегабайтах, гигабайтах. Время доступа к памяти (наносекунды) представляет собой минимальное время, достаточное для размещения в памяти единицы информации. Плотность записи информации (бит/см2) представляет собой количество информации, записанной на единице поверхности носителя.

Слайд 7


Кэш, или сверхоперативная память
Очень быстрое ЗУ небольшого объёма, которое используется при обмене данными между микропроцессором и оперативной памятью для компенсации разницы в скорости обработки информации процессором и несколько менее быстродействующей оперативной памятью.

Слайд 8

Кэш-память
Кэш-памятью управляет специальное устройство - контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их в кэш-память. Современные микропроцессоры имеют встроенную кэш-память, так называемый кэш первого уровня размером 8, 16 или 32 Кбайт. Кроме того, на системной плате компьютера может быть установлен кэш второго уровня ёмкостью 256, 512 Кбайт и выше.

Слайд 9

Специальная память
ПОСТОЯННАЯ ПАМЯТЬ (ПЗУ, англ. ROM, Read Only Memory - память только для чтения) - энергонезависимая память, используется для хранения данных, которые никогда не потребуют изменения. Содержание памяти специальным образом "зашивается" в устройстве при его изготовлении для постоянного хранения. Из ПЗУ можно только читать.

Слайд 10

Специальная память
Прежде всего в постоянную память записывают программу управления работой самого процессора. В ПЗУ находятся программы управления дисплеем, клавиатурой, принтером, внешней памятью, программы запуска и остановки компьютера, тестирования устройств. Важнейшая микросхема постоянной памяти – модуль BIOS

Слайд 11

Специальная память
BIOS (Basic Input/Output System - базовая система ввода-вывода) - совокупность программ, предназначенных для автоматического тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память.

Слайд 12

Специальная память
CMOS RAM – память с невысоким быстродействием и минимальным энергопотреблением от батарейки. Используется для хранения информации о конфигурации и составе оборудования компьютера, о режимах его работы.

Слайд 13

Внешняя память
Жесткий диск Оптический диск Гибкий диск Флеш-память

Слайд 14

Жесткий диск
ЖЕСТКИЙ ДИСК (винчестер), устройство для постоянного хранения информации, используемой при работе с компьютером. Принципы современной технологии изготовления жесткого диска были разработаны в 1973 американской фирмой IBM. Новое устройство, которое могло хранить до 16 килобайт информации, имело 30 цилиндров (дорожек) для записи, каждый из которых был разбит на 30 секторов.

Слайд 15

Слайд 16

Оптический диск
CD-диски. Дата разработки 1979 г. Разработчики Philips + Sony Размеры 12 см × 1,2 мм Емкость от 650 МБ до 879 МБ Срок службы диска 10 - 50 лет DVD-диски. Первый привод, поддерживающий запись DVD-R, выпущен Pioneer в октябре 1997 года.

Память ПК
Памятью компьютера называется совокупность устройств для
хранения
программ,
вводимой
результатов и выходных данных.
информации,
промежуточных
Память ПК
Внутренняя
память
ОЗУ
(RAM)
ОЗУ
ПЗУ
(ROM)
Внешняя
память
КЭШ
память
Жесткие Флоппи- СD/ DVDдиски
диски
диски
ZIPдиски
Flash
память
оперативное
запоминающее
устройство.
Это
энергозависимая память с произвольным доступом: RAM – Random

Access Memory.

Основные характеристики памяти:
информационная ёмкость(объем)
быстродействие
энергопотребление
Быстродействие памяти зависит от:
полосы пропускания (максимальная
скорость передачи данных х разрядность)
различного рода задержек

Задержки памяти делят на:
время доступа (access time)
длительность цикла памяти (cycle time).
Время доступа представляет собой промежуток
времени между выдачей запроса на чтение и
моментом поступления запрошенного слова из
памяти.
Длительность цикла памяти определяется
минимальным возможным временем между двумя
последовательными обращениями к памяти. То
есть это суммарное время считывания адреса
ячейки и считывания/записи данных в эту ячейку.

Информационная ёмкость
Производные единицы исчисляются
в 2-ичной системе:
1024 б - 1 Кб
210 байт – 1 килобайт
1048576 б - 1024 Кб– 1 Мб
220 байт - 210 килобайт - 1 мегабайт
1073741824 б – 1048576 Кб – 1024 Мб – 1 Гб
230 байт - 220 килобайт - 210 мегабайт - 1 гигабайт

входы




сигнал
синхронизации
SRAM память, построенная на триггерах
выход
Статическая память
SRAM

Динамическая память DRAM
столбцы
2
3
1
4
транзистор
«ключ»
конденсатор
T
T
K
T
K
T
K
T
Ячейка памяти (1 бит)
T
T
T
K
T
K
T
K
T
K
T
K
K
K
Линия адреса
T
K
T
K
T
K
Линия данных
K
T
K
K

Быстродействие микросхем ОП
характеризуется тремя видами задержек:
1. Задержка между подачей номера строки и номера
столбца – tRCD
2. Задержка между подачей номера столбца и
получением содержимого ячейки на выходе – tCAC
3. Задержка между чтением последней ячейки и подачей
номера новой строки - tRP

Технологии для RAM
до середины 90-х годов:
DRAM
– Dynamic Random Access Memory динамическая память –
основной вид архитектуры ОЗУ. Суммарная задержка 200 нс
1995 год:
FPM DRAM - Fast-Page
Mode DRAM - динамическая память
быстрого страничного режима
1996 год:
EDO DRAM
- Extend Data Output DRAM – динамическая
память с усовершенствованным выходом
2000 год (до настоящего момента):
SDRAM – Synchronous DRAM синхронная динамическая память
DDR-SDRAM - Double Data Rate SDRAM - SDRAM
удвоенной скорости передачи данных.
DRDRAM - Direct Rambus DRAM
- технология фирмы «Rambus»

Конструктивную основу RAM (ОЗУ)
составляют модули памяти
Соединительные проводники
(линии интерфейса),
объединенные в шины
Чипы памяти на
модуле
Общий вид модуля памяти

Слоты RAM на материнской плате
Выходы микросхемы –
пины (pins)
Чипы с матрицами памяти

DIP модули микросхем RAM
информационная емкость DIP по 64 и 256 Кбайт,1 и 4 Мбайт
Гнездо для установки DIP-корпуса
1. DIP-корпус
Установленные модули
Установка модулей DIP на материнскую плату

SIPP модули микросхем RAM
SIPP – сокращение от Single Inline Package
выходы микросхемы (пины)
основа микросхемы
чипы памяти
(изоляционный слой)

SIММ модули микросхем RAM
30pin модуль
чипы памяти
FPM DRAM
выходы микросхемы (пины)
пластмассовый держатель

SIММ модули микросхем RAM
72pin модуль
чипы памяти
EDO DRAM
выходы микросхемы (пины)
пластмассовый держатель
колодка слота

DIММ модули микросхем RAM
DIMM DDR2 256 Mb, “KINGMAX“
частота шины 533 МГц
DIMM DDR 512 Mb, “SAMSUNG“
частота шины 400 МГц
DIMM DDR 256 Mb, “KINGMAX “
частота шины 400 МГц

RIMM - Rambus In-line Memory Module
радиатор для охлаждения
микросхемы
4-е модуля RIMM,
установленные на
материнской плате

Новые разработки RAM
4 модуля
DIMM по 1 Гб
плата
расширения
Американская компания DDR Drive собирается представить
устройство хранения информации, использующее модули DIMM, в
виде платы расширения. Плата связывается с системой через слот
PCI Express. Новинка способна поддерживать до 8 Гб памяти в
четырёх слотах DIMM.

Новые разработки RAM
чипы памяти по 256 Мб
Компания Elpida Memory в конце 2004 г. сообщила
о выпуске и начале поставок первых 1 Гб модулей DIMM
DDR2 SDRAM для серверов.

Новые разработки RAM
Микросхема АВМ Advanced Memory Buffer
Компания Elpida Memory в 2005 году начала производство
модулей памяти с полной буферизацией (Fully-Buffered Dual in-line
Memory Modules) FB-DIMM емкостью от 512 Мб до 4 Гб, предназначенной для использования в серверах новых поколений.

Новые разработки RAM
Компания OCZ Technology Inc. в декабре 2006г. представила новые
DDR2-модули с улучшенным радиатором (объемом по 1 Гб)
Новый сетчатый корпус радиатора, улучшая циркуляцию воздуха над микросхемами памяти, позволяет
эффективнее
решать
проблему
отвода тепла.

Новые разработки RAM
Компания OCZ Technology Inc. в ноябре 2006г. объявила о выпуске
модулей DDR2 1150 PC-9200 с гибридным радиатором (объемом
по 1 Гб)
Такая конструкция улучшает
климатические условия
работы микросхем памяти,
отводя тепло от контактных
площадок и нижней части
корпуса.
Гибридный
радиатор
несет ответственность за
верхнюю часть, теплопроводящая плата отвечает за нижнюю часть
микросхем и контакты.

Сравнительные характеристики типов SDRAM
SDRAM
DDR
SDRAM
DDR2
SDRAM
DDR3
SDRAM
Частота
системной
шины (МГц)
66, 100,
133
200, 266,
333, 400
400, 533
667, 800
800, 1066
1333, 1600
Напряжение
питания
3.3 (+/- 0.3)
2.5 (+/- 0.2)
1.8 (+/- 0.1)
1.5 (+/- 0.075)
DDR3 – это новейший этап развития памяти типа DDR SDRAM.
Первые модули памяти DDR3 были выпущены компанией
Infineon в июле 2005. От модулей DDR2 новые модули
отличаются более высокой скоростью передачи данных и
меньшим энергопотреблением.

Новая память Z-RAM вместо SRAM
для кэш-памяти
Разработка фирмы Innovative Silicon - Z-RAM (Zero
Capacitor DRAM), бесконденсаторная DRAM. В качестве
конденсатора используется затвор полевого транзистора,
отделенный от канала слоем диэлектрика. Основным
преимуществом
подобной
памяти
является
высокая
компактность ячейки памяти - ее размер меньше в пять раз по
сравнению с SRAM и в два раза - со стандартной DRAM
памятью. Еще одним плюсом Z-RAM является возможность
использования существующего оборудования и материалов при
производстве чипов - при изготовлении Z-RAM используется
SOI техпроцесс (кремний-на-изоляторе), который и применяет
AMD для производства своих чипов. Это позволит значительно
увеличить объем "кэша", а вместе с ним и производительность
чипов. (январь 2006г.)

Архитектура Z-RAM
Ячейка Z-RAM
Запись двоичных «1» и «0»

Новые разработки RAM
Seiko Epson выпустили прототип 16KB
SRAM модуля памяти, элементы которого
сформированы на низкотемпературном
поликристаллическом стекле и заключены
в платиск с использованием фирменной
“SUFTLA” технологии. Подобная
технология позволила создать различные
гибкие носители информации в
низкотемпературной среде.
Была успешно протестирована демо-система состоящая из 8 битного
процессора и модуля гибкой памяти.
Ячейка из 6-и транзисторов,
разработанная по 65-микронной
технологии. Уменьшение размера
ячейки SRAM позволяет увеличить
объем кэш-памяти и соответственно
производительность процессоров.

Постоянная память ПК
ПЗУ (постоянное запоминающее устройство) или
ROM (read-only memory) – это энергонезависимая
постоянная память, доступная только для чтения.
микросхема ROM BIOS
размещение на
материнской плате

Постоянная память ПК
CMOS RAM - цифровой датчик времени.
Микросхема, созданная на основе технологии
Complementary Metal-Oxide Semiconductor
размещение CMOS батареи
на материнской плате

Слайд 2

Основной функцией внешней памяти является долговременное хранение информации. Внешняя память Магнитнаяпамять Оптическаяпамять Флэш-память

Слайд 3

Магнитный принцип записи и считывания информации

В накопителях на гибких магнитных дисках (НГМД) и накопителях на жестких магнитных дисках (НЖМД) в основу записи информации положено намагничивание ферромагнетиков в магнитном поле, хранение информации основывается на сохранении намагниченности, а считывание информации базируется на явлении электромагнитной индукции. В отсутствии сильных магнитных полей и высоких температур элементы носителя могут сохранять свою намагниченность в течение долгого времени (лет, десятилетий).

Слайд 4

Гибкие магнитные диски

Гибкие магнитные диски помещаются в пластмассовый корпус. Такой носитель информации называется дискетой. Информационная емкость дискеты невелика и составляет 1,44 МБ. Скорость записи и считывания информации также мала – около 50 Кбайт/с из-за медленного вращения диска (360 об/мин.)

Слайд 5

Жесткие магнитные диски

Жесткий магнитный диск представляет собой несколько десятков дисков, размещенных на одной оси, заключенных в металлический корпус и вращающихся с большой угловой скоростью. За счет большего количества дорожек на каждой стороне дисков и большого количества дисков информационная емкость дисков достаточно велика. Скорость чтения-записи – 300 Мб/с (по шине SATA), которая достигается за счет быстрого вращения дисков (до 7200 об/мин.).

Слайд 6

Оптический принцип записи и считывания информации

В процессе записи информации на лазерные диски для создания участков поверхности с различными коэффициентами отражения применяются различные технологии: от простой штамповки до изменения отражающей способности участков поверхности диска с помощью мощного лазера. Информация на лазерном диске записывается на одну спиралевидную дорожку, содержащую чередующиеся участки с различной отражающей способностью.

Слайд 7

В процессе считывания информации с лазерных дисков луч лазера, установленный в дисководе, падает на поверхность вращающегося диска и отражается. Так как поверхность имеет участки с различными коэффициентами отражения, то отраженный луч также меняет свою интенсивность (0 или1). Затем отраженные импульсы преобразуются с помощью фотоэлементов в электрические импульсы и по магистрали передаются в оперативную память.

Слайд 8

Оптические диски

Оптические CD-диски рассчитаны на использование инфракрасного лазера с длиной волны 780 нм и имеют информационную емкость 700 Мбайт. Оптические DVD-диски рассчитаны на использование красного лазера с длиной волны 650 нм. Они имеют большую информационную емкость по сравнению с CD-дисками (4,7 Гбайт) за счет меньшей ширины и более плотного размещения оптических дорожек. DVD-диски могут быть двухслойными (емкость 8,5 Гбайт), при этом оба слоя имеют отражающую поверхность, несущую информацию. В настоящее время на рынок поступили оптические диски HD DVD и Blu Ray, информационная емкость которых в 3-5 раз превосходит инофрмационную емкость DVD-дисков за счет использования синего лазера с длиной волны 405 нанометров.

Слайд 9

Лазерные дисководы и диски

На лазерных CD-ROM и DVD-ROM дисках хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна. Производятся такие диски путем штамповки на дорожке микроскопических физических углублений (участков с плохой отражающей способностью).

Слайд 10

На дисках CD-R и DVD-R информация может быть записана, но только один раз. Данные записываются на диск лучом лазера повышенной мощности, который разрушает органический краситель записывающего слоя и меняет его отражающие свойства. Управляя мощностью лазера, на записывающем слое получают чередование темных и светлых пятен, которые при чтении интерпретируются как логические 0 или 1. Строение DVD-диска

Слайд 11

На дисках CD-RW и DVD±RW информация может быть записана и стерта многократно. Записывающий слой изготавливается из специального сплава, который можно нагреванием приводить в два различных устойчивых агрегатных состояния – аморфное и кристаллическое. При записи (или стирании) луч лазера нагревает участок дорожки и приводит его в одно из устойчивых состояний, которые характеризуются различной степенью прозрачности. При чтении луч лазера имеет меньшую мощность и не изменяет состояние записывающего слоя, а чередующиеся участки с различной прозрачностью интерпретируются как логические 0 и 1. Строение DVD-RW-диска Строение СD-RW-диска

Слайд 12

Оптические CD- и DVD –дисководы используют лазер для чтения или записи информации. Скорость чтения/записи информации зависит от скорости вращения диска. Первые CD-дисководы были односкоростными и обеспечивали скорость чтения информации 150 Кбайт/с. В настоящее время широкое распространение получили CD-дисководы, которые обеспечивают в 52 раза большую скорость чтения и записи дисков. (до 7,8 Мбайт/с).. Запись CD-RW дисков производится на меньшей скорости, поэтому CD-дисководы маркируются 3-мя числами «скорость чтения × скорость записи CD-R × скорость записи CD-RW.

Слайд 13

Первое поколение DVD-накопителей обеспечивало скорость считывания информации примерно 1,3 Мбайт/с. В настоящее время широкое распространение получили DVD-дисководы, которые обеспечивают в 16 раз большую скорость чтения (примерно 21 Мбайт/с), в 8 раз большую скорость записи DVD±R дисков и в 6 раз большую скорость записи DVD±RW дисков. DVD-дисководы маркируются тремя числами (например, «16 × 8 × 6»).

Слайд 14

Флэш-память

Свойства флэш-памяти Полупроводниковая – не содержащая механически движущихся частей, построенная на основе полупроводниковых микросхем Энергонезависимая – не требующая дополнительной энергии для хранения данных (энергия требуется только для записи) Перезаписываемая – допускающая изменения хранимых в ней данных

Слайд 15

Принцип записи и чтения на картах флэш-памяти

Во флэш-памяти для записи и считывания информации используются электрические сигналы. В простейшем случае каждая ячейка флэш-памяти хранит один бит информации и состоит из одного полевого транзистора со специальной электрически изолированной областью («плавающим затвором»). При отсутствии сигнала на линии управления ячейка памяти хранит один бит информации (0 или 1) на стоке полевого транзистора. Между стоком и истоком ток не идет. При записи данных на линию управления подается положительное напряжение и электроны в результате эффекта туннелирования попадают на плавающий затвор. Между стоком и истоком возникает электрический ток и в результате на стоке полевого транзистора записывается один бит данных.

Слайд 16

Карты флэш-памяти

Флэш-память представляет собой микросхему, помещенную в миниатюрный плоский корпус. Микросхемы флэш-памяти могут содержать миллиарды ячеек, каждая из которых хранит 1 бит информации. Информация, записанная на флэш-память может храниться очень длительное время (от 20 до 100 лет) и способна выдержать значительные механические нагрузки (в 5-10 раз превышающие предельно допустимые для жестких дисков). Флэш-память компактнее и потребляет значительно меньше энергии (примерно в 10 -20 раз), чем магнитные и оптические дисководы.Накопители на флэш-памяти представляют собой микросхему флэш-памяти, дополненную контроллером USB, и подключаются к последовательному порту USB. USB флэш-диски могут использоваться в качестве сменного носителя информации.

Слайд 20

Вопросы

Почему сердечник магнитной головки изготавливается из магнитомягкого материала, а магнитный слой носителя – из магнитожесткого материала? Как можно увеличить информационную емкость жестких дисков? Почему в CD-дисководах используется инфракрасный лазер, в DVD-дисководах – красный лазер, а в HDDVD- и Blu-Ray-дисководах – синий лазер? В чем состоит различие между дисками CD-ROM, CD-R и CD-RW? Что означают числа маркировки DVD-дисководов? В чем состоит отличие микросхем флэш-памяти от микросхем оперативной памяти? В чем состоит преимущество флэш-памяти перед магнитной и оптической памятью?

Посмотреть все слайды

1 слайд

2 слайд

Внешняя память компьютера Внешняя память компьютера предназначена для долговременного хранения больших объемов информации. Внешняя память компьютера является энергонезависимой. Внешняя память может быть на магнитных и оптических дисках и магнитных лентах.

3 слайд

Внешняя память компьютера Носители информации –– устройства, позволяющие сохранять информацию длительное время. Накопители информации (приводы) –– устройства, которые обеспечивают запись информации на носитель, а также ее считывание в оперативную память.

4 слайд

Внешняя память компьютера Основные виды современных носителей информации и соответствующих им накопителей Flash-память м а г н и т н ы е о п т и ч е с к и е Носители Накопители ГМД (дискеты, флоппи-диски) НГМД ЖМД (Hard Disk) НЖМД винчестер МЛ НМЛ (стримеры) CD-ROM CD-ROM CD-R CD-RW CD-RW CD-RW DVD DVD

5 слайд

Внешняя память компьютера В основу записи, хранения и считывания информации на внешних носителях положены 2 принципа: магнитный оптический

6 слайд

Внешняя память компьютера Магнитные принцип намагниченный участок – 1 ненамагниченный участок – 0

7 слайд

Внешняя память компьютера Магнитные носители ГМД – гибкие магнитные диски ЖМД – жесткие магнитные диски МЛ – магнитные ленты

8 слайд

Внешняя память компьютера ГМД – гибкие магнитные диски Гибкие диски (дискеты, Floppy disk) позволяют переносить информацию с одного компьютера на другой, хранить информацию, не используемую постоянно на ПК: архивную и копии. Размер дискеты равен 3.5 дюйма Объем памяти равен 1.44 Мб Процесс записи и считывания информации медленный (≈ 50 Кб/с или 360 об/мин)

9 слайд

Внешняя память компьютера ГМД – гибкие магнитные диски окно защиты от записи приспособление для зажима отверстие для считывания/записи скользящая крышка пластмассовый корпус

10 слайд

Внешняя память компьютера ГМД – гибкие магнитные диски преимущества гибких исков: Дешевые Легкие Широко распространенные Произвольный доступ недостатки гибких дисков: Самые медленные носители Маленький объем памяти

11 слайд

Внешняя память компьютера ЖМД – жесткие магнитные диски Жесткий магнитный диск – это несколько тонких металлических (алюминиевый сплав) дисков, расположенных друг под другом, очень быстро вращающихся на одной оси, и заключенных в металлический корпус. Размещен внутри системного блока. Объем памяти измеряется в Гбайтах (80,150 и т.д.) Скорость доступа к информации 133 Мб/с (7200 об/мин)

12 слайд

Внешняя память компьютера ЖМД – жесткие магнитные диски преимущества жестких дисков: Находится в герметичном закрытом корпусе Надежно защищен от пыли и других загрязнений Скорость чтения и записи с жесткого диска высокая Произвольный доступ

13 слайд

Внешняя память компьютера ЖМД – жесткие магнитные диски Жесткие диски обычно монтируются в одном корпусе с дисководом, поэтому винчестером называют все устройство целиком: привод + носитель

14 слайд

Внешняя память компьютера МЛ –магнитные ленты Кассета с рулоном магнитной ленты в пластмассовом кожухе. Основным ее достоинством является ее относительная малая стоимость и большой объем памяти. Главный недостаток в том, что на доступ к информации затрачивается больше времени, чем при других видах памяти.

15 слайд

Внешняя память компьютера Магнитные диски – устройства прямого (произвольного) доступа Магнитные ленты – устройства последовательного доступа

16 слайд

Внешняя память компьютера Оптический принцип, оптические носители СD диски – устройство для хранения информации, которая кодируется посредством чередования отражающих и не отражающих свет участков на спиральной дорожке диска Размер лазерного диска равен 4.72” Объем памяти ≈ 650Мб Скорость чтения и записи с лазерного диска средняя

17 слайд

18 слайд

Внешняя память компьютера Оптический принцип, оптические носители CD-ROM – это оптический носитель информации, предназначенный только для чтения.

19 слайд

Внешняя память компьютера Оптический принцип, оптические носители CD-R (CD-Recordable) позволяют записывать собственные компакт-диски.

20 слайд

Внешняя память компьютера Оптический принцип, оптические носители CD-RW позволяют записывать и перезаписывать диски CD-RW, записывать диски CD-R, читать диски CD-ROM. Являются универсальными.

В продолжение темы:
Настройка Wi-Fi

Поймали вирус в браузере, и теперь постоянно выскакивает реклама? Это ужасно раздражает. Да и вылечить браузер от вирусов не так-то просто. Их еще нужно найти, а многие...

Новые статьи
/
Популярные