Как измерять переменное напряжение. Как измерять напряжение вольтметром

Цель работы - исследование метрологических характеристик электронных вольтметров

Ознакомиться с используемой аппаратурой и инструкциями по ее применению. Получить у преподавателя конкретное задание по выполнению работы.

Определить основную погрешность электронного вольтметра на диапазоне измерений, указанном преподавателем. Построить на одном графике зависимости относительной и приведенной погрешностей от показаний электронного вольтметра. Сделать вывод о соответствии поверяемого вольтметра своему классу точности.

Определить амплитудно-частотную характеристику АЧХ электронного вольтметра. Построить график АЧХ и определить рабочую полосу частот вольтметра на уровне затухания АЧХ, определяемом нормативно-технической документацией на поверяемый вольтметр.

Экспериментально оценить АЧХ цифрового вольтметра. Провести сравнительный анализ амплитудно-частотных характеристик электронного, цифрового и электромеханического 11 Примечание 1 . Результаты исследований по электромеханическим вольтметрам взять из лабораторной работы №1, если она предварительно выполнялась. вольтметров. Построить графики АЧХ исследуемых приборов.

Измерить электронным вольтметром напряжения различной формы (синусоидальной, прямоугольной и треугольной) с одинаковой амплитудой на частотах, лежащих в рабочей полосе частот этого прибора. Объяснить и подтвердить расчетами полученные результаты. Сделать вывод о влиянии формы измеряемого напряжения на показания электронного вольтметра.

Описание и порядок выполнения работы

Используемые приборы

Электронный вольтметр с аналоговым выходом - GVT-417В

Прибор измерительный универсальный с цифровой индикацией - GDM-8135

Генератор гармонических сигналов - SFG-2120

Осциллограф электронный - GOS-620

Описания приборов прилагаются на стенде .

Для выполнения работы применяют схему, представленную на рис. 2.1, где ГС - генератор (синтезатор) сигналов синусоидальной, прямоугольной и треугольной формы,ЦВ - цифровой вольтметр, ЭВ - электронный вольтметр, ЭЛО - электронно-лучевой осциллограф.

1. Основную погрешность электронного вольтметра определяют методом сличения, т.е. сравнением его показаний с показаниями образцового, в данном случае цифрового вольтметра, при синусоидальном напряжении. Показания образцового вольтметра принимаются за действительные значения напряжения.

Поверку электронного вольтметра GVT-417B проводят при частоте 1кГц на шкалах с верхними пределами 1В или 3В, что обусловлено диапазоном регулирования выходного напряжения используемого генератора.

Поверку проводят для n = (610) отметок шкалы, равномерно распределенных по шкале прибора, при плавном увеличении и уменьшении его показаний

Поверяемые точки напряжения U п устанавливают на поверяемом электронном вольтметре, а действительные значения напряжений U о ув, U о ум снимают с образцового цифрового вольтметра соответственно при подходе к поверяемой отметке U п шкалы при увеличении и уменьшении показаний.

Результаты измерений и расчетов представляют в виде таблицы.

Абсолютную, относительную, приведенную погрешности и вариацию показаний определяют по формулам, приведенным в лабораторной работе 1 или в ; определяют также максимальную приведенную погрешность max = Мах{| i |} и максимальную вариацию H max = Мах{H i }, полученные в результате эксперимента.

По результатам испытаний и расчетов строят на одном графике зависимости относительной и приведенной погрешностей от показаний электронного вольтметра, = F (U п), = F (U п); на графике также проводят линии, определяющие границы предельно допустимой приведенной погрешности, соответствующей классу точности поверяемого прибора.

На основании анализа данных об основной погрешности и вариации показаний делают вывод о соответствии указанных характеристик требованиям, определяемым классом точности поверяемого прибора.

2. Амплитудно-частотную характеристику электронного вольтметра определяют как зависимость показаний вольтметра от частоты входного синусоидального сигнала при постоянном значении его напряжения.

На практике широко используют понятие рабочей полосы частот средства измерений. Под рабочей полосой частот вольтметра понимают диапазон частот f , для которого неравномерность АЧХ вольтметра не превосходит некоторой заранее установленной допустимой величины. Так, для электронного вольтметра GVT-417B в пределах рабочей полосы допускается не более чем 10-ти процентное изменение показаний прибора от показания на частоте f 0 = 1КГц.

Крайние значения диапазона частот, удовлетворяющего указанному требованию, называются нижней f Н и верхней f В граничными частотами рабочей полосы электронного вольтметра.

Определение АЧХ проводят также по схеме, представленной на рис. 2.1. В качестве источника сигналов используют генератор SFG-2120, который обеспечивает постоянство амплитуды выходного сигнала при изменении частоты в его рабочем диапазоне.

Предварительно на генераторе ГС устанавливают частоту f 0 =1кГц при синусоидальной форме сигнала. С помощью регулятора выходного напряжения генератора ГС устанавливают показание электронного вольтметра на отметке шкалы в диапазоне (0.7-0.9) от верхнего предела измерений и записывают установленное значение напряжения U П (f 0 =1кГц) = … .

В дальнейшем при определении АЧХ изменяют только частоту генератора сигналов ГС, а напряжение, снимаемое с генератора, не изменяют.

Для контроля уровня сигнала и его формы используют электронно-лучевой осциллограф. На экране осциллографа, путем выбора коэффициентов (VOLTS/DIV) отклонения и коэффициентов (TIME/DIV) развертки, получают удобную для наблюдений и измерений осциллограмму - изображение нескольких периодов синусоиды с достаточно большой амплитудой; записывают амплитуду l А (или l 2А - двойную амплитуду) изображения сигнала для последующего контроля уровня сигнала.

АЧХ удобно определять отдельно для области верхних и области нижних частот.

В области верхних частот АЧХ начинают снимать с шагом 100 кГц: 1 кГц (начальная частота), 100 кГц, 200 кГц, … до частоты, при которой показания электронного вольтметра упадут до величины порядка 0,8-0,9 от первоначально установленного показания U П (f 0 =1кГц). Для уточнения верхней частоты f в рабочей полосы частот f электронного вольтметра в районе 10-ти процентного спада АЧХ необходимо дополнительно снять несколько точек АЧХ с меньшим шагом изменения частоты входного сигнала.

В процессе проведения испытаний постоянный уровень выходного сигнала ГС контролируют электронным осциллографом.

Результаты испытаний и расчетов записать в таблицу:

Для ЭВ f В = … для ЦВ f В = …

где U П (f ) - показания вольтметра на частоте f ; K (f ) = U П (f ) /U П (f о = 1 кГц) - АЧХ вольтметра, представленная в относительных единицах для соответствующих частот, f в - верхняя граничная частота рабочей полосы вольтметра, найденная в эксперименте.

При выполнении задания аналогичным образом при тех же частотах оценивается АЧХ цифрового вольтметра. Результаты испытаний заносятся в ту же таблицу. Поскольку в данной работе требуется сравнить рабочие полосы частот электронного и цифрового вольтметров в качественном смысле, не обязательно уточнять АЧХ цифрового вольтметра в дополнительных точках по частоте. При этом значения граничных частот цифрового вольтметра будут определены с меньшей точностью.

Нижняя граничная частота f н рабочей полосы f для электронных вольтметров переменного тока обычно находится в области единиц и первых десятков Гц. Поэтому процедура определения АЧХ в области нижних частот может быть следующей: сначала уменьшают частоту от исходной f 0 =1000Гц через 200Гц, а затем от 50Гц - через 10Гц. При необходимости уточняют нижнюю частоту f н рабочей полосы, при которой АЧХ падает до уровня 0.9 от ее значения при f 0 =1000Гц, снятием дополнительных точек с шагом 1Гц.

Оценка АЧХ цифрового вольтметра проводится при тех же частотах.

Результаты испытаний и расчетов представляют в виде таблицы:

Для ЭВ f н = …Гц, для ЦВ f н = …Гц.

По результатам проведенных исследований строятся графики АЧХ для верхних и нижних частот. По оси частот графики удобно строить в логарифмическом масштабе.

3. Определение влияния формы входного сигнала на показания вольтметров переменного тока.

В электронных вольтметрах переменного тока применяют преобразователи Пр переменного напряжения в постоянное, как, например, показано на рис. 2.2, где: u вх (t ) - входное напряжение, У - усилитель переменного тока, ИМ - магнитоэлектрический измерительный механизм, - угол отклонения измерительного механизма.

Используют преобразователи амплитудного, средневыпрямленного или действующего значений переменного напряжения в постоянное. В то же время все электронные вольтметры переменного тока, не зависимо от вида преобразователя, градуируются в действующих значениях синусоидального напряжения . Это может привести к появлению дополнительных погрешностей при измерении несинусоидальных напряжений.

Электронный вольтметр GVT-417B имеет преобразователь средневыпрямленного значения. Для таких вольтметров угол отклонения указателя пропорционален средневыпрямленному значению U ср входного напряжения

где: k V - коэффициент преобразования вольтметра, u вх (t ) - входное переменное напряжение с периодом Т .

Показания U п вольтметра градуируются в действующих U значениях синусоидального напряжения

где: k Ф = U /U СР - коэффициент формы напряжения, для синусоидального напряжения k Ф = 1,11. Следовательно, для другой формы напряжения (k Ф? 1,11) показания вольтметра могут значительно отличаться от его действующего значения, что приводит к появлению дополнительной погрешности результата измерений.

В таких случаях искомые напряжения при известной форме сигналов можно находить расчетным путем.

Исходя из принципа действия вольтметра и принятой градуировки можно по показаниям U П прибора определить средневыпрямленное значение любого (в пределах АЧХ вольтметра) измеряемого напряжения

U СР = U П /1,11.

Действующее значение U несинусоидального напряжения может быть определено только в том случае, когда известен коэффициент k Ф формы кривой напряжения, k Ф = U/ U СР (или известна форма сигнала, по которой может быть определен этот коэффициент)

U= k Ф U СР.

Численные значения коэффициентов формы для некоторых сигналов представлены в таблице.

Для экспериментальной оценки влияния формы напряжения на показания электронного вольтметра последовательно измеряют сигналы синусоидальной, прямоугольной и треугольной формы при их одинаковой амплитуде.

Предварительно на синусоидальном сигнале устанавливают показания вольтметров в диапазоне 0.5 - 0.6 от верхнего предела измерений выбранной шкалы при номинальной частоте f н =1 кГц , а затем при той же амплитуде входных сигналов измеряют вольтметром напряжения при других формах сигнала. Формы сигналов (синусоидальная, треугольная, прямоугольная) устанавливается нажатием на клавишу “Wave ” на генераторе.

По показаниям U П вольтметра определяют среднее U СР и действующее U значения напряжений для всех форм сигналов.

Для оценки влияния формы напряжения на показания электронного вольтметра с преобразователем средневыпрямленного напряжения определяют дополнительную относительную погрешность (в процентах)

100(U П - U )/ U .

Результаты измерений и расчетов записывают в таблицу.

Следует заметить, что дополнительная погрешность войдет в результат измерений, если действующие значения напряжений несинусоидальной формы определять непосредственно по показаниям вольтметра без учета формы сигнала и проведения соответствующих расчетов.

По результатам исследований сделать вывод о влиянии формы кривой напряжения на результаты его измерения электронным вольтметром.

Литература

Метрология, стандартизация и сертификация: учебник для студ. высш. учеб. заведений/[Б.Я.Авдеев, В.В.Алексеев, Е.М.Антонюк и др.]; под ред В.В.Алексеева. - М. : Издательский центр «Академия», 2007. стр. 136-140.

Измерение напряжения на практике приходится выполнять довольно часто. Напряжение измеряют в радиотехнических, электротехнических устройствах и цепях и т.д. Вид переменного тока может быть импульсным или синусоидальным. Источниками напряжения являются или генераторы тока.

Напряжение импульсного тока имеет параметры амплитудного и среднего напряжения. Источниками такого напряжения могут быть импульсные генераторы. Напряжение измеряется в вольтах, имеет обозначение «В» или «V». Если напряжение переменное, то впереди ставится символ «~ », для постоянного напряжения указывается символ «-». Переменное напряжение в домашней бытовой сети маркируют ~220 В.

Это приборы, предназначенные для измерения и контроля характеристик электрических сигналов. Осциллографы работают на принципе отклонения электронного луча, который выдает изображение значений переменных величин на дисплее.

Измерение напряжения в сети переменного тока

Согласно нормативным документам величина напряжения в бытовой сети должна быть равной 220 вольт с точностью отклонений 10%, то есть напряжение может меняться в интервале 198-242 вольта. Если в вашем доме освещение стало более тусклым, лампы стали часто выходить из строя, либо бытовые устройства стали работать нестабильно, то для выяснения и устранения этих проблем для начала необходимо измерение напряжения в сети.

Перед измерением следует подготовить имеющийся у вас измерительный прибор к работе:

  • Проверить целостность изоляции контрольных проводов со щупами и наконечниками.
  • Установить переключатель на переменное напряжение, с верхним пределом 250 вольт или выше.
  • Вставить наконечники контрольных проводов в гнезда измерительного прибора, например, . Чтобы не ошибиться, лучше смотреть на обозначения гнезд на корпусе.
  • Включить прибор.

Из рисунка видно, что на тестере выбрана граница измерений 300 вольт, а на мультиметре 700 вольт. Некоторые приборы требуют для измерения напряжения устанавливать в нужное положение несколько разных переключателей: вид тока, вид измерений, а также вставить наконечники проводов в определенные гнезда. Конец черного наконечника в мультиметре воткнут в гнездо СОМ (общее гнездо), красный наконечник вставлен в гнездо с обозначением «V». Это гнездо является общим для измерения любого вида напряжения. Гнездо с маркировкой «ma» применяется для замеров небольших токов. Гнездо с обозначением «10 А» служит для измерения значительной величины тока, который может достичь 10 ампер.

Если измерять напряжение со вставленным проводом в гнездо «10 А», то прибор выйдет из строя, или сгорит предохранитель. Поэтому при выполнении измерительных работ следует быть внимательным. Наиболее часто ошибки возникают в случаях, когда сначала измеряли сопротивление, а затем, забыв переключить на другой режим, начинают измерение напряжения. При этом внутри прибора сгорает резистор, отвечающий за измерение сопротивления.

После подготовки прибора, можно начинать измерения. Если при включении мультиметра на индикаторе ничего не появляется, это означает, что элемент питания, расположенный внутри прибора, отслужил свой срок и требует замены. Чаще всего в мультиметрах стоит «Крона», выдающая напряжение 9 вольт. Срок ее службы составляет около года, в зависимости от производителя. Если мультиметром долго не пользовались, то крона все равно может быть неисправной. Если батарейка исправна, то мультиметр должен показать единицу.

Щупы проводов необходимо вставить в розетку или прикоснуться ими к оголенным проводам.

На дисплее мультиметра сразу появится величина напряжения сети в цифровом виде. На стрелочном приборе стрелка отклонится на некоторый угол. Стрелочный тестер имеет несколько градуированных шкал. Если их внимательно рассмотреть, то все становится понятным. Каждая шкала предназначена для определенных измерений: тока, напряжения или сопротивления.

Граница измерений на приборе была выставлена на 300 вольт, поэтому нужно отсчитывать по второй шкале, имеющий предел 3, при этом показания прибора необходимо умножить на 100. Шкала имеет цену деления, равной 0,1 вольта, поэтому получаем результат, изображенный на рисунке, около 235 вольт. Этот результат находится в допустимых пределах. Если при измерении показания прибора постоянно меняются, возможно, плохой контакт в соединениях электрической проводки, что может привести к искрению и неисправностям в сети.

Измерение постоянного напряжения

Источниками постоянного напряжения являются аккумуляторы, низковольтные или батарейки, напряжение которых не более 24 вольт. Поэтому прикосновение к полюсам батарейки не опасно, и нет необходимости в специальных мерах безопасности.

Для оценки работоспособности батарейки или другого источника, необходимо измерение напряжения на его полюсах. У пальчиковых батареек полюсы питания расположены на торцах корпуса. Положительный полюс маркируется «+».

Постоянный ток измеряется аналогичным образом, как и переменный. Отличие заключается только в настройке прибора на соответствующий режим и соблюдении полярности выводов.

Напряжение батарейки обычно обозначено на корпусе. Но результат измерения еще не говорит об исправности батарейки, так как при этом измеряется электродвижущая сила батарейки. Продолжительность эксплуатации прибора, в котором будет установлен элемент питания, зависит от его емкости.

Для точной оценки работоспособности батарейки, необходимо проводить измерение напряжения при подключенной нагрузке. Для пальчиковой батарейки в качестве нагрузки подойдет обычная лампочка для фонарика на 1,5 вольта. Если напряжение при включенной лампочке снижается незначительно, то есть, не более, чем на 15%, следовательно, батарейка пригодна для работы. Если напряжение падает значительно сильнее, то такая батарейка может еще послужить только в настенных часах, которые расходуют очень мало энергии.

Почти каждому из нас рано или поздно доводилось (или еще придется) столкнуться с задачей измерить электрическое напряжение.

Это может понадобиться вам в одной из бесконечного множества бытовых ситуаций, и хорошо бы заранее знать, как и при помощи чего это можно сделать.

Для измерения напряжения вам понадобится всего лишь один прибор под названием "мультиметр" и источник электроэнергии. Измерить напряжение завалявшейся батарейки, блока питания для ноутбука, оголенных проводов в квартире - это одни из наиболее частых применений.

В этой статье мы на примере рассмотрим как измерять напряжение электрической энергии при помощи бытового мультиметра.

В качестве примера, для чего это нужно знать каждому, можно привести несколько бытовых ситуаций: замерив напряжение на батарейке можно понять, насколько она "здорова", или может быть её уже можно выбрасывать; лампа в люстре не горит, хотя лампочка новая - стоит проверить, возможно проблема в проводке; при отключении электричества на щитке в подъезде не лишним будет убедиться, действительно ли вы обесточили всю квартиру. В общем, применений масса.

С задачами разобрались, теперь стоит рассказать о том, что вам для понадобится для измерений. В 99% бытовых ситуаций вам будет нужен лишь источник переменного или постоянного тока и "мультиметр" - прибор измеряющий напряжение, также называемый "тестером", и другие электрические показатели, а конкретно одна из его функций - вольтметр . Для домашних замеров подойдет самая простая модель, которую можно найти в магазине по цене от 200 рублей.

И совсем немного о токе. Напряжение электрического тока измеряется в вольтах (V) . Сам ток может быть постоянным (DCV) или переменным (ACV) . В розетке и домашней проводке ток всегда переменный, а у всего, где есть "+" и "-" (батареек, аккумуляторов и т.д.) постоянный. Первым делом определите, какой ток вы собрались измерять и выберите на мультиметре соответствующее положение переключателя: DCV - постоянный ток, ACV - переменный ток.

Цифровые значения на мультиметре - это максимальные измеряемые показатели. Если вы даже приблизительно не знаете какое напряжение вам предстоит измерить, начните с установки на самое высокое значение.

Стоит учесть, что многие современные мультиметры умеют сами определять какой ток на них подается - постоянный или переменный. Если ваш мультиметр из таких, то вместо положений переключателя DCV и ACV у вас будет одно положение - V. В таком случае просто выставьте его.

Как подключить провода мультиметра

У многих новичков после покупки часто возникает вопрос - куда вставлять провода (а если быть точным, то они называются щупы ) мультиметра и как это правильно сделать.

Большинство мультиметров имеют три разъема для подключения проводов и два провода - черный и красный. Черный провод вставляется в гнездо с надписью COM , красный же в гнездо, где в числе символов есть обозначение V .

Третье гнездо служит для замера высоких токов и для измерения напряжения оно нам не понадобится, а вообще в него при необходимости перетыкается красный провод, а черный всегда остается в одном гнезде.

Как измерить напряжение в розетке

Одной из самых частых задач является измерение напряжение в розетке либо в квартирной проводке. При помощи мультиметра это сделать очень просто. Как мы уже писали выше, в розетках течет переменный ток, поэтому для его измерения нужно выставить переключатель на мультиметре в зону ACV .

Мы знаем, что напряжение должно быть примерно 220 вольт, поэтому если у вас мультиметр как на примере с фотографии выше - выставьте переключатель на отметку больше предполагаемого значения , в данном случае на 750 в диапазоне ACV.

Настроив прибор самое время засунуть пальцы щупы в розетку. Не имеет разницы какой провод в какое отверстие розетки вставлять. В целом здесь бояться нечего, главное держаться за изолированную часть щупов и не касаться металлической их части (хотя сделать это довольно сложно даже при большом желании), а также не допускать их касания друг друга, пока они вставлены в розетку, иначе можно устроить короткое замыкание.

Если вы все сделали правильно на экране вашего мультиметра будет показано текущее напряжение в розетке и вашей внутриквартирной проводке.

В нашем случае это 235.8 вольт - в пределах нормы. Ровно 220V на экране вы никогда не увидите, так что погрешность в +-20 - это нормально.

Как измерить напряжение аккумулятора или батареи

Всевозможные батарейки и различные аккумуляторы, в общем все, где вы видите "+" и "-" - все это источники постоянного электрического тока. Измерить постоянное напряжение ни чуть не сложнее, чем переменное.

Для этого возьмите, к примеру, самую обыкновенную пальчиковую батарейку. Соедините красный провод мультиметра с "+" - вым контактом батарейки, а черный с "-" - вым . Если вы соедините их наоборот - ничего страшного не произойдет, просто на экране мультиметра показания будут отображаться со знаком "минус", примерно вот так.

Обычно напряжение на аккумуляторах маленькое, так что можно не бояться и прижимать щупы пальцами. До 20 вольт вы скорее всего ничего не почувствуете. В случае батарейки типа AAA - её максимальное напряжение 1.5 вольта, что совсем не страшно для человека.

Как мы видим из показаний мультиметра, напряжение в нашей батарейке 1.351 вольта, а значит батарейка еще вполне себе заряженная и может использоваться.

Аналогичным образом можно проверять любые другие элементы питания и измерять их вольтаж, и как вы теперь знаете, ничего сложного в этом нет.

Принцип работы электронного вольтметра переменного напряжения состоит в преобразовании переменного напряжения в постоянное, прямо пропорциональное соответствующему значению переменного напряжения, и измерении постоянного напряжения электромеханическим измерительным прибором либо цифровым вольтметром.

Измеряемое электронным вольтметром значение переменного напряжения определяется типом применяемого измерительного преобразователя переменного напряжения в постоянное. Рассмотрим устройство электронных вольтметров переменных напряжений, требования к отдельным элементам, особенности построения и их метрологические характеристики.

Вольтметры амплитудных значений

Отклонение указателя амплитудного вольтметра прямо пропорционально амплитудному (пиковому) значению переменного напряжения, независимоот формы кривой напряжения. Таким свойством не обладает ни одна из систем электромеханических измерительных приборов. В электронных вольтметрах амплитудного значения используются пиковые детекторы с открытым и закрытым входом.

Необходимая чувствительность (нижний предел измеряемых напряжений – единицы милливольт) достигается применением после детектора УПТ с большим коэффициентом усиления.

Нарис. 2 показана упрощенная структурная схема амплитудного вольтметра с закрытым входом, построенного по схеме уравновешивающего преобразования.

Измеряемое напряжение U x подается через входное устройство на вход пикового детектора с закрытым входом (VD1, С1, R1). На идентичный детектор (VD2, С2, R2) подается компенсирующее напряжение с частотой около 100 кГц, сформированное в цепи обратной связи. Постоянные напряжения, равные амплитудным значениям измеряемого сигнала и компенсирующего напряжения сравниваются на резисторах R1,R2. Следует отметить, что при малых напряжениях детекторы будут работать в квадратичном режиме, что приведет к погрешности вольтметра амплитудного значения.

Разностное напряжение подается на УПТ A1 с высоким коэффициентом усиления. Если напряжение на выходе УПТ имеет положительную полярность, что свидетельствует о превышении напряжения сигнала над компенсирующим или об отсутствии последнего, запускается ранее запертый генератор-модулятор, и компенсирующее напряжение поступает через делитель обратной связи на детектор VD2, R2, С2. Генератор-модулятор представляет собой генератор, собранный по емкостной трехточечной схеме, усилитель и эмиттерный повторитель.

Превышение компенсирующего напряжения над измеряемым приводит к запиранию генератора-модулятора. Выходное напряжение с амплитудой, пропорциональной амплитуде измеряемого напряжения и частотой 100 кГц, подается на детектор средневыпрямленного напряжения U1 и измеряется магнитоэлектрическим вольтметром PV1.

Важным требованием является идентичность передаточных характеристик детекторов сигнала и компенсирующего напряжения. Только при одинаковых характеристиках равенство выходных напряжений детекторов будет свидетельствовать о равенстве входных напряжений.

В установившемся режиме на резисторах R1 и R2 образуется некоторая разность напряжений и равна

(1)

где К и β – коэффициенты передачи цепи прямого преобразования и обратной связи.

В данной схеме в цепь прямого преобразования входят УПТ, генератор-модулятор, в цепь обратного – делитель в цепи обратной связи и детектор компенсирующего сигнала. Таким образом, для обеспечения высокой точности уравновешивания коэффициент усиления УПТ и генератора-модулятора должен быть достаточно высок.

Составляющими погрешности являются: погрешность образцовых средств при градуировке, случайная погрешность измерения постоянного напряжения магнитоэлектрическим прибором, погрешность, обусловленная нестабильностью коэффициента передачи цепи обратной связи и коэффициента передачи детектора средневыпрямленного значения, неидентичность характеристик детекторов, неуравновешенность схемы.

По подобной схеме работают выпускаемые промышленностью серийные амплитудные милливольтметры В3–6, В3–43. Основная погрешность на частотах до 30 МГц составляет 4...6%, на частотах до 1 ГГц – 25%. Шкалы амплитудных вольтметров градуируются в среднеквадратических значениях синусоидального напряжения. Недостатком является большая погрешность при измерении напряжений с большим уровнем гармонических составляющих.

В продолжение темы:
Настройка Wi-Fi

Любой пользователь, кто хотя бы раз пытался вникнуть в хитрые тонкости создания стильных жилых интерьеров, сталкивался с такой ситуацией, когда представленные на рынке...

Новые статьи
/
Популярные