Программирование на avr studio. Как написать код для AVR, программирование микроконтроллеров Atmel AVR на Си

Для микроконтроллеров AVR существуют различные языки программирования, но, пожалуй, наиболее подходящими являются ассемблер и Си, поскольку в этих языках в наилучшей степени реализованы все необходимые возможности по управлению аппаратными средствами микроконтроллеров.

Ассемблер - это низкоуровневый язык программирования, использующий непосредственный набор инструкций микроконтроллера. Создание программы на этом языке требует хорошего знания системы команд программируемого чипа и достаточного времени на разработку программы. Ассемблер проигрывает Си в скорости и удобстве разработки программ, но имеет заметные преимущества в размере конечного исполняемого кода, а соответственно, и скорости его выполнения.

Си позволяет создавать программы с гораздо большим комфортом, предоставляя разработчику все преимущества языка высокого уровня.
Следует еще раз отметить, что архитектура и система команд AVR создавалась при непосредственном участии разработчиков компилятора языка Си и в ней учтены особенности этого языка. Компиляция исходных текстов, написанных на Си, осуществляется быстро и дает компактный, эффективный код.

Основные преимущества Си перед ассемблером: высокая скорость разработки программ; универсальность, не требующая досконального изучения архитектуры микроконтроллера; лучшая документируемость и читаемость алгоритма; наличие библиотек функций; поддержка вычислений с плавающей точкой.

В языке Си гармонично сочетаются возможности программирования низкого уровня со свойствами языка высокого уровня. Возможность низкоуровневого программирования позволяет легко оперировать непосредственно аппаратными средствами, а свойства языка высокого уровня позволяют создавать легко читаемый и модифицируемый программный код. Кроме того, практически все компиляторы Си имеют возможность использовать ассемблерные вставки для написания критичных по времени выполнения и занимаемым ресурсам участков программы.

Одним словом, Си - наиболее удобный язык как для начинающих знакомиться с микроконтроллерами AVR, так и для серьезных разработчиков.

Чтобы преобразовать исходный текст программы в файл прошивки микроконтроллера, применяют компиляторы.

Фирма Atmel поставляет мощный компилятор ассемблера, который входит в среду разработки Atmel Studio, работающую под Windows. Наряду с компилятором, среда разработки содержит отладчик и эмулятор.
Atmel Studio совершенно бесплатна и доступна на сайте Atmel .

В настоящее время представлено достаточно много компиляторов Си для AVR. Самым мощным из них считается компилятор фирмы IAR Systems из Стокгольма. Именно ее сотрудники в середине 90-х годов участвовали в разработке системы команд AVR. IAR C Compiler имеет широкие возможности по оптимизации кода и поставляется в составе интегрированной среды разработки IAR Embedded Workbench (EWB), включающей в себя также компилятор ассемблера, линкер, менеджер проектов и библиотек, а также отладчик. Цена полной версии пакета составляет 2820 EUR. На сайте компании можно бесплатно скачать оценочную версию на 30 дней или бессрочную с ограничением размера кода в 4 Кбайта.

Американской фирмой Image Craft из калифорнийского Пало-Альто выпускается компилятор языка Си, получивший достаточно широкую популярность. JumpStart C for AVR имеет приемлемую оптимизацию кода и не слишком высокую цену (от $50 до $499 в зависимости от версии). Демо-версия JumpStart C for AVR полностью функциональна в течение 45 дней.

Не меньшую популярность завоевал румынский Code Vision AVR C Compiler , цена полной версии этого компилятора относительно невысока и составляет 150 EUR. Компилятор поставляется вместе с интегрированной средой разработки, в которую, помимо стандартных возможностей, включена достаточно интересная функция - CodeWizardAVR Automatic Program Generator. Наличие в среде разработки последовательного терминала позволяет производить отладку программ с использованием последовательного порта микроконтроллера. У разработчиков можно скачать бесплатную оценочную версию с ограничением размера кода в 4 Кбайта и отключенным сохранением сгенерированного исходного кода на Си.

Компанией MikroElektronika , расположенной в сербском городе Белграде, выпускается целое семейство компиляторов для AVR-микроконтроллеров. Компилятор для языка Си под названием mikroC PRO for AVR стоит $249. Есть также mikroBasic и mikroPascal за ту же цену. На сайте разработчиков имеются демоверсии с ограничением размера кода в 4096 bytes. Плюсом этого семейства компиляторов является единая платформа и единая идеология, что может обеспечивать легкий переход не только между языками, но и между микроконтроллерами (есть версии компиляторов для PIC, STM32, 8051 ...).

Поистине культовой стала интегрированная среда разработки . Она включает мощные компиляторы Си и ассемблера, программатор AVRDUDE, отладчик, симулятор и множество других вспомогательных программ и утилит. WinAVR прекрасно интегрируется со средой разработки AVR Studio от Atmel. Ассемблер идентичен по входному коду ассемблеру AVR Studio. Компиляторы Си и ассемблера имеют возможность создания отладочных файлов в формате COFF, что позволяет применять не только встроенные средства, но и использовать мощный симулятор AVR Studio. Еще одним немаловажным плюсом является то, что WinAVR распространяется бесплатно без ограничений (производители поддерживают GNU General Public License).

В качестве резюме стоит сказать, что WinAVR является идеальным выбором для тех, кто начинает осваивать микроконтроллеры AVR. Именно эта среда разработки и рассматривается в качестве основной в данном курсе.

Киселев Роман, Май 2007 Статья обновлена 26 Мая 2014

Итак, что вообще такое микроконтроллер (далее МК)? Это, условно говоря, маленький компьютер, размещенный в одной интегральной микросхеме. У него есть процессор (арифметическо-логическое устройство, или АЛУ), flash-память, EEPROM-память, множество регистров, порты ввода-вывода, а также дополнительные «навороты», такие как таймеры, счетчики, компараторы, USARTы и т. п. Микроконтроллер после подачи питания загружается и начинает выполнять программу, записанную в его flash-памяти. При этом он может через порты ввода/вывода управлять самыми разнообразными внешними устройствами.

Что же это означает? Это значит, что в МК можно реализовать любую логическую схему, которая будет выполнять определенные функции. Это значит, что МК – микросхема, внутреннее содержимое которой, фактически, мы создаем сами. Что позволяет, купив несколько совершенно одинаковых МК, собрать на них совершенно разные схемы и устройства. Если вам захочется внести какие-либо изменения в работу электронного устройства, то не нужно будет использовать паяльник, достаточно будет лишь перепрограммировать МК. При этом не нужно даже вынимать его из вашего дивайса, если вы используете AVR, т. к. эти МК поддерживают внутрисхемное программирование. Таким образом, микроконтроллеры ликвидируют разрыв между программированием и электроникой.

AVR – это 8-битные микроконтроллеры, т. е. их АЛУ может за один такт выполнять простейшие операции только с 8-ми битными числами. Теперь пора поговорить о том, какой МК мы будем использовать. Я работаю с МК ATMega16. Он очень распространенный и приобрести его можно практически в любом магазине радиодеталей где-то за 100 руб. Если вы его не найдете – тогда можно купить любой другой МК серии MEGA, но в этом случае придется искать к нему документацию, т. к. одни и те же «ножки» разных МК могут выполнять разные функции, и, подключив, казалось бы, правильно все выводы, вы, может быть, получите рабочее устройство, а, может быть, лишь облако вонючего дыма. При покупке ATMega16 проверьте, чтобы он был в большом 40-ножечном DIP-корпусе, а также купите к нему панельку, в которую его можно будет вставить. Для работы с ним потребуются также дополнительные устройства: светодиоды, кнопки, разъемы и т. п..

ATMega16 обладает очень большим количеством самых разнообразных функций. Вот некоторые его характеристики:

  • Максимальная тактовая частота – 16 МГц (8 МГц для ATMega16L)
  • Большинство команд выполняются за один такт
  • 32 8-битных рабочих регистра
  • 4 полноценных 8-битных порта ввода/вывода
  • два 8-битных таймера/счетчика и один 16-битный
  • 10-разрядный аналогово-цифровой преобразователь (АЦП)
  • внутренний тактовый генератор на 1 МГц
  • аналоговый компаратор
  • интерфейсы SPI, I2C, TWI, RS-232, JTAG
  • внутрисхемное программирование и самопрограммирование
  • модуль широтно-импульсной модуляции (ШИМ)

Полные характеристики этого устройства, а также инструкции по их применению можно найти в справочнике (Datasheetе) к этому МК. Правда, он на английском языке. Если вы знаете английский, то обязательно скачайте этот Datasheet, в нем много полезного.

Приступим, наконец, к делу. Я рекомендую изготовить для микроконтроллера специальную макетно-отладочную плату, на которой можно будет без паяльника (или почти без него) собрать любую электрическую схему с микроконтроллером. Использование такой платы значительно облегчит работу с МК и ускорит процесс изучения его программирования. Выглядит это так:

Что для этого понадобится?

Во-первых, потребуется сама плата. Я купил уже готовую в магазине радиодеталей за 115 руб. Потом припаял к ней все необходимые детали. Получилась неимоверно удобная вещь, на которой можно за считанные минуты собрать какую-либо электрическую схему путем перетыкания шлейфов и установки микросхем и индикаторов.

Для соединения элементов схемы очень удобно использовать шлейфы, на концах которых установлены разъемы. Эти разъемы надеваются на «ножки», торчащие рядом с каждым портом МК. Микроконтроллер следует устанавливать в панельку, а не припаивать к плате, иначе его очень трудно будет вынуть в случае, если вы его случайно сожжете. Ниже приведена цоколевка МК ATMEGA16:

Поясним, какие ножки нас сейчас интересуют.

  • VCC – сюда подается питание (4,5 – 5,5 В) от стабилизированного источника
  • GND – земля
  • RESET – сброс (при низком уровне напряжения)
  • XTAL1, XTAL2 – сюда подключается кварцевый резонатор
  • PA, PB, PC, PD – порты ввода/вывода (A, B, C и D соответственно).

В качестве источника питания можно использовать все, что выдает 7-11 В постоянного тока. Для стабильной работы МК нужно стабилизированное питание. В качестве стабилизатора можно использовать микросхемы серии 7805. Это линейные интегральные стабилизаторы, на вход которых подают 7-11 В постоянного нестабилизированного тока, а на выходе получают 5 В стабилизированного. Перед 7805 и после него нужно поставить фильтрующие конденсаторы (электролитические для фильтрации помех низких частот и керамические для высоких). Если не удается найти стабилизатор, то можно в качестве источника питания использовать батарейку на 4,5 В. От нее МК нужно питать напрямую.

Ниже приведу схему подключения МК:

Давайте теперь разберемся, что здесь для чего.

BQ1 – это кварцевый резонатор, задающий рабочую частоту МК. Можно поставить любой до 16 МГц, но, поскольку мы планируем работать в будущем и с COM-портом, то рекомендую использовать резонаторы на следующие частоты: 14,7456 МГц, 11,0592 МГц, 7,3725 МГц, 3,6864 МГц или 1,8432 МГц (позже станет ясно, почему). Я использовал 11,0592 МГц. Понятное дело, что чем больше частота, тем выше и скорость работы устройства.

R1 – подтягивающий резистор, который поддерживает напряжение 5 В на входе RESET. Низкий уровень напряжения на этом входе означает сброс. После сброса МК загружается (10 – 15 мс) и начинает выполнять программу заново. Поскольку это высокоомный вход, то нельзя оставлять его «болтающимся в воздухе» - небольшая наводка на нем приведет к непредвиденному сбросу МК. Именно для этого и нужен R1. Для надежности рекомендую также установить конденсатор С6 (не более 20 мкФ).

SB1 – кнопка сброса.

Кварцевый резонатор и фильтрующий конденсатор C3 должны располагаться как можно ближе к МК (не далее 5-7 см), т. к. иначе могут возникать наводки в проводах, приводящие к сбоям в работе МК.

Синим прямоугольником на схеме обведен собственно программатор. Его удобно выполнить в виде провода, один конец которого втыкается в LPT порт, а другой – в некий разъем рядом с МК. Провод не должен быть чрезмерно длинным. Если возникнут проблемы с этим кабелем (обычно не возникают, но всякое бывает) то придется спаять адаптер Altera ByteBlaster. О том, как это сделать, написано в описании к программатору AVReal.

Теперь, когда разобрались с железом, пора перейти к программному обеспечению.

Для программирования AVR есть несколько сред разработки. Во-первых, это AVR Studio – официальная система программирования от Atmel. Она позволяет писать на ассемблере и отлаживать программы, написанные на ассемблере, С и С++. IAR – это коммерческая система программирования на C, С++ и ассемблере. WinAVR – компилятор с открытыми исходниками. AtmanAVR – система программирования для AVR с интерфейсом, почти «один в один» таким же, как у Visual C++ 6. AtmanAVR также позволяет отлаживать программы и содержит множество вспомогательных функций, облегчающих написание кода. Эта система программирования коммерческая, но, согласно лицензии, ее можно в течение месяца использовать «нахаляву».

Я предлагаю начать работу с IAR как с наиболее «прозрачной» средой разработки. В IAR проект целиком создается «ручками», соответственно, сделав несколько проектов, вы уже будете четко знать, что означает каждая строчка кода и что будет, если ее изменить. При работе же с AtmanAVR придется либо пользоваться предварительно созданным шаблоном, который очень громоздкий и трудный для понимания для человека, не имеющего опыта, либо иметь множество проблем с заголовочными файлами при сборке проекта «с нуля». Разобравшись с IAR, мы впоследствии рассмотрим другие компиляторы.

Итак, для начала раздобудьте IAR. Он очень распространен и его нахождение не должно быть проблемой. Скачав где-либо IAR 3.20, устанавливаем компилятор / рабочую среду, и запускаем его. После этого можно начинать работу.

Запустив IAR, выбираем file / new / workspace , выбираем путь к нашему проекту и создаем для него папку и даем имя, например, «Prog1». Теперь создаем проект: Project / Create new project… Назовем его также – «Prog1». Щелкаем правой кнопкой мыши на заголовке проекта в дереве проектов и выбираем «Options»

Здесь будем настраивать компилятор под конкретный МК. Во-первых, нужно выбрать на вкладке Target тип процессора ATMega16, на вкладке Library Configuration установить галочку Enable bit definitions in I/O-include files (чтобы можно было использовать в коде программы имена битов различных регистров МК), там же выбрать тип библиотеки С/ЕС++. В категории ICCAVR нужно на вкладке Language установить галочку Enable multibyte support, а на вкладке Optimization выключить оптимизацию (иначе она испортит нашу первую программу).

Далее выбираем категорию XLINK. Здесь нужно определить формат откомпилированного файла. Поскольку сейчас мы задаем опции для режима отладки (Debug), о чем написано в заголовке, то на выходе нужно получить отладочный файл. Позже мы его откроем в AVR Studio. Для этого нужно выбрать расширение.cof, а тип файла – ubrof 7.

Теперь нажимаем ОК, после чего меняем Debug на Release.

Снова заходим в Options, где все параметры, кроме XLINK, выставляем те же. В XLINK меняем расширение на.hex, а формат файла на intel-standart.

Вот и все. Теперь можно приступать к написанию первой программы. Создаем новый Source/text и набираем в нем следующий код:

#include "iom16.h" short unsigned int i; void main (void ) { DDRB = 255; PORTB = 0; while (1) { if (PORTB == 255) PORTB = 0; else PORTB++; for (i=0; i

Файл «iom16.h» находится в папке (C:\Program Files)\IAR Systems\Embedded Workbench 3.2\avr\inc . Если вы используете другой МК, например, ATMega64, то выбирайте файл «iom64.h». В этих заголовочных файлах хранится информация о МК: имена регистров, битов в регистрах, определены имена прерываний. Каждая отдельная «ножка» порта A, B, C или D может работать либо как вход, либо как выход. Это определяется регистрами Data Direction Register (DDR). 1 делает «ножку» выходом, 0 – входом. Таким образом, выставив, например, DDRA = 13, мы делаем выходами «ножки» PB0, PB2, PB3, остальные – входы, т.к. 13 в двоичном коде будет 00001101.

PORTB – это регистр, в котором определяется состояние «ножек» порта. Записав туда 0, мы выставляем на всех выходах напряжение 0 В. Далее идет бесконечный цикл. При программировании МК всегда делают бесконечный цикл, в котором МК выполняет какое-либо действие, пока его не сбросят или пока не произойдет прерывание. В этом цикле пишут как бы «фоновый код», который МК выполняет в самую последнюю очередь. Это может быть, например, вывод информации на дисплей. В нашем же случае увеличивается содержимое регистра PORTB до тех пор, пока он не заполнится. После этого все начинается сначала. Наконец, цикл for на десять тысяч тактов. Он нужен для формирования видимой задержки в переключении состояния порта В.



Теперь сохраняем этот файл в папке с проектом как Prog1.c, копируем в папку с проектом файл iom16.h, выбираем Project/Add Files и добавляем «iom16.h» и «Prog1.c». Выбираем Release, нажимаем F7, программа компилируется и должно появиться сообщение:


Total number of errors: 0
Total number of warnings: 0

Приведу фотографию своего программатора:

Скачиваем программатор AVReal. Копируем его (AVReal32.exe) в папку Release/exe, где должен лежать файл Prog1.hex. Подаем питание на МК, подключаем кабель-программатор. Открываем Far Manager (в нем наиболее удобно прошивать МК), заходим в эту папку, нажимаем Ctrl+O. Поскольку у нас совершенно новый МК, то набиваем

avreal32.exe +MEGA16 -o11.0592MHZ -p1 -fblev=0,jtagen=1,cksel=F,sut=1 –w

Не забудьте правильно указать частоту, если используете не 11059200 Гц! При этом в МК прошиваются т.н. fuses – регистры, управляющие его работой (использование внутреннего генератора, Jtag и т.п.). После этого он готов к приему первой программы. Программатору в качестве параметров передают используемый LPT-порт, частоту, имя файла и другие (все они перечислены в описании к AVReal). Набираем:

Avreal32.exe +Mega16 -o11.0592MHz -p1 -e -w -az -% Prog1.hex

В случае правильного подключения программатор сообщит об успешном программировании. Нет гарантии, что это получится с первого раза (при первом вызове программы). У меня самого бывает программируется со второго раза. Возможно, LPT-порт глючный или возникают наводки в кабеле. При возникновении проблем тщательно проверьте свой кабель. По своему опыту знаю, что 60% неисправностей связаны с отсутствием контакта в нужном месте, 20% - с наличием в ненужном и еще 15% - с ошибочной пайкой не того не к тому. Если ничего не получится, читайте описание к программатору, попробуйте собрать Byte Blaster.

Предположим, у вас все работает. Если теперь подключить к порту В МК восемь светодиодов (делайте это в выключенном состоянии МК, и желательно последовательно со светодиодами включить резисторы в 300-400 Ом) и подать питание, то произойдет маленькое чудо – по ним побежит «волна»!

© Киселев Роман
Май 2007

Я не раз и не два говорил, что изучение МК надо начинать с ассемблера. Этому был посвящен целый курс на сайте (правда он не очень последовательный, но постепенно я его причесываю до адекватного вида) . Да, это сложно, результат будет не в первый день, но зато ты научишься понимать что происходит у тебя в контроллере. Будешь знать как это работает, а не по обезьяньий копировать чужие исходники и пытаться понять почему оно вдруг перестало работать. Кроме того, Си намного проще натворить быдлокода, который вылезет вилами в самый неподходящий момент.

К сожалению все хотят результат немедленно. Поэтому я решил пойти с другой стороны — сделать обучалку по Си, но с показом его нижнего белья. Хороший программист-эмбеддер всегда крепко держит свою железку за шкварник, не давая ей ни шагу ступить без разрешения. Так что будет вначале Си код, потом то что родил компилятор и как все это работает на самом деле:)

С другой стороны у Си сильная сторона это переносимость кода. Если, конечно, писать все правильно. Разделяя алгоритмы работы и их железные реализации в разные части проекта. Тогда для переноса алгоритма в другой МК достаточно будет переписать только интерфейсный слой, где прописано все обращение к железу, а весь рабочий код оставить как есть. И, конечно же, читаемость. Сишный исходник проще понять с первого взгляда (хотя.. мне, например, уже пофигу на что фтыкать — хоть си, хоть асм:)), но, опять же, если правильно все написать. Этим моментам я тоже буду уделять внимание.

В качестве подопытной железки на которой будет ставиться львинная доля всех примеров будет моя отладочная плата .

Первая программа на Си для AVR

Выбор компилятора и установка среды
Для AVR существует множество разных компиляторов Си:
В первую очередь это IAR AVR C — почти однозначно признается лучшим компилятором для AVR, т.к. сам контроллер создавался тесном сотрудничистве Atmel и спецов из IAR. Но за все приходится платить. И этот компилятор мало того, что является дорогущим коммерческим софтом, так еще обладает такой прорвой настроек, что просто взять и скомпилить в нем это надо постраться. У меня с ним правда не срослось дружбы, проект загнивал на странных ошибках на этапе линковки (позже выяснил, что это был кривой кряк).

Вторым идет WinAVR GCC — мощный оптимизирующий компилятор. Полный опенсорц, кроссплатформенный, в общем, все радости жизни. Еще он отлично интегрируется в AVR Studio позволяя вести отладку прямо там, что адски удобно. В общем, я выбрал его.

Также есть CodeVision AVR C — очень популярный компилятор. Стал популярен в связи со своей простотой. Рабочую программу в нем получить можно уже через несколько минут — мастер стартового кода этом сильно способствует, штампуя стандартыне инициализации всяких уартов. Честно говоря, я как то с подозрением к нему отношусь — как то раз приходилось дизасмить прогу написаную этим компилером, каша какая то а не код получалась. Жуткое количество ненужных телодвижений и операций, что выливалось в неслабый обьем кода и медленное быстродействие. Впрочем, возможно тут была ошибка в ДНК писавшего исходную прошивку. Плюс он хочет денег. Не так много как IAR, но ощутимо. А в деморежиме дает писать не более чем 2кб кода.
Кряк конечно есть, но если уж воровать, так миллион, в смысле IAR:)

Еще есть Image Craft AVR C и MicroC от микроэлектроники. Ни тем ни другим пользоваться не приходилось, но вот SWG очень уж нахваливает MicroPascal , мол жутко удобная среда программирования и библиотеки. Думаю MicroC не хуже будет, но тоже платный.

Как я уже сказал, я выбра WinAVR по трем причинам: халявный, интегрируется в AVR Studio и под него написана просто прорва готового кода на все случаи жизни.

Так что качай себе инсталяху WinAVR с и AVR Studio. Далее вначале ставится студия, потом, сверху, накатывается WinAVR и цепляется к студии в виде плагина. Настоятельно рекомендую ставить WinAVR по короткому пути, что то вроде C:\WinAVR тем самым ты избежишь кучи проблем с путями.

Cоздание проекта
Итак, студия поставлена, Си прикручен, пора бы и попробовать что нибудь запрограммировать. Начнем с простого, самого простого. Запускай студию, выбирай там новый проект, в качестве компилятора AVR GCC и вписывай название проекта.

Открывается рабочее поле с пустым *.c файлом.

Теперь не помешает настроить отображение путей в закладках студии. Для этого слазь по адресу:
Меню Tools — Options — General — FileTabs и выбираем в выпадающем списке «Filename Only». Иначе работать будет невозможно — на вкладке будет полный путь файла и на экране будет не более двух трех вкладок.

Настройка проекта
Вообще, классическим считается создание make файла в котором бы были описаны все зависимости. И это, наверное, правильно. Но мне, выросшему на полностью интегрированных IDE вроде uVision или AVR Studio этот подход является глубоко чуждым. Поэтому буду делать по своему, все средствами студии.

Тыкай в кнопку с шестеренкой.


Это настройки твоего проекта, а точнее настройки автоматической генерации make файла. На первой странице надо всего лишь вписать частоту на которой будет работать твой МК. Это зависит от фьюз битов, так что считаем что частота у нас 8000000Гц.
Также обрати внимание на строку оптимизации. Сейчас там стоит -Os это оптимизация по размеру. Пока оставь как есть, потом можешь попробовать поиграться с этим параметром. -O0 это отстутсвие оптимизации вообще.

Следующим шагом будет настройка путей. Первым делом добавь туда директорию твоего проекта — будешь туда подкладывать сторонние библиотеки. В списке появится путь «.\»

Make файл сгенерирован, его ты можешь поглядеть в папке default в своем проекте, просто пробегись глазами, посмотри что там есть.


На этом пока все. Жми везде ОК и переходи в исходник.

Постановка задачи
Чистый лист так и подмывает воплотить какую нибудь хитрую задумку, так как банальное мигание диодом уже не вставляет. Давай уж сразу брать быка за рога и реализуем связь с компом — это первым делом что я делаю.

Работать будет так:
При приходе по COM порту единички (код 0х31) будем зажигать диодик, а при приходе нуля (код 0х30) гасить. Причем сделано будет все на прерываниях, а фоновой задачей будет мигание другого диода. Простенько и со смыслом.

Собираем схему
Нам надо соединить модуль USB-USART конвертера с выводами USART микроконтроллера. Для этого берем перемычку из двух проводков и накидывам на штырьки крест накрест. То есть Rx контроллера соединяем с Tx конвертера, а Tx конвертера с Rx контроллера.

Получится, в итоге вот такая схема:


Подключение остальных выводов, питания, сброса не рассматриваю, оно стандартное

Пишем код

Сразу оговорюсь, что я не буду углубляться конкретно в описание самого языка Си. Для этого существует просто колоссальное количество материала, начиная от классики «Язык программирования Си» от K&R и заканчивая разными методичками.

Одна такая метода нашлась у меня в загашнике, я когда то именно по ней изучал этот язык. Там все кратко, понятно и по делу. Я ее постепенно верстаю и перестаскиваю на свой сайт.

Там правда еще не все главы перенесены, но, думаю, это ненадолго.

Вряд ли я опишу лучше, поэтому из учебного курса, вместо подробного разьяснения сишных тонкостей, я буду просто давать прямые линки на отдельные страницы этой методички.

Добавляем библиотеки.
Первым делом мы добавляем нужные библиотеки и заголовки с определениями. Ведь Си это универсальный язык и ему надо обьяснить что мы работаем именно с AVR, так что вписывай в исходник строку:

1 #include

#include

Этот файл находится в папке WinAVR и в нем содержится описание всех регистров и портов контроллера. Причем там все хитро, с привязкой к конкретному контроллеру, который передается компилятором через make файл в параметре MCU и на основании этой переменной в твой проект подключается заголовочный файл с описанием адресов всех портов и регистров именно на этот контроллер. Во как! Без него тоже можно, но тогда ты не сможешь использовать символические имена регистров вроде SREG или UDR и придется помнить адрес каждого вроде «0xC1», а это голову сломать.

Сама же команда #include <имя файла> позволяет добавить в твой проект содержимое любого текстового файла, например, файл с описанием функций или кусок другого кода. А чтобы директива могла этот файл найти мы и указывали пути к нашему проекту (директория WinAVR там уже по дефолту прописана).

Главная функция.
Программа на языке Си вся состоит из функций. Они могут быть вложенными и вызываться друг из друга в любом порядке и разными способами. Каждая функция имеет три обязательных параметра:

  • Возвращаемое значение, например, sin(x) возвращает значение синуса икс. Как в математике, короче.
  • Передаваемые параметры, тот самый икс.
  • Тело функции.

Все значения передаваемые и возвращаемые обязаны быть какого либо типа, в зависимости от данных.

Любая программа на Си должна содержать функцию main как точку входа в главную прогрмму, иначе это нифига не Си:). По наличию main в чужом исходнике из миллиона файлов можно понять, что это и есть головная часть программы откуда начинается все. Вот и зададим:

1 2 3 4 5 int main(void ) { return 0 ; }

int main(void) { return 0; }

Все, первая простейшая программа написана, не беда что она ничего не делает, мы же только начали.

Разберем что же мы сделали.
int это тип данных которая функция main возвращает.

Конечно, в микроконтроллере main ничего вернуть в принципе не может и по идее должна быть void main(void) , но GCC изначально заточен на PC и там программа может вернуть значение операционной системе по завершении. Поэтому GCC на void main(void) ругается Warning’ом.

Это не ошибка, работать будет, но я не люблю варнинги.

void это тип данных которые мы передаем в функцию, в данном случае main также не может ничего принять извне, поэтом void — пустышка. Заглушка, применяется тогда когда не надо ничего передавать или возвращать.

Вот такие вот { } фигурные скобочки это программный блок, в данном случае тело функции main , там будет распологаться код.

return — это возвращаемое значение, которое функция main отдаст при завершении, поскольку у нас int, то есть число то вернуть мы должны число. Хотя это все равно не имеет смысла, т.к. на микроконтроллере из main нам выходить разве что в никуда. Я возвращаю нуль. Ибо нефиг. А компилятор обычно умный и на этот случай код не генерит.
Хотя, если извратиться, то из main на МК выйти можно — например вывалиться в секцию бутлоадера и исполнить ее, но тут уже потребуется низкоуровневое ковыряние прошивки, чтобы подправить адреса перехода. Ниже ты сам увидишь и поймешь как это сделать. Зачем? Вот это уже другой вопрос, в 99.999% случаев это нафиг не надо:)

Сделали, поехали дальше. Добавим переменную, она нам не особо нужна и без нужны вводить переменные не стоит, но мы же учимся. Если переменные добавляются внутри тела функции — то они локальные и существуют только в этой функции. Когда из функции выходишь эти переменные удаляются, а память ОЗУ отдается под более важные нужды. .

1 2 3 4 5 6 int main(void ) { unsigned char i; return 0 ; }

int main(void) { unsigned char i; return 0; }

unsigned значит беззнаковый. Дело в том, что в двоичном представлении у нас старший бит отводится под знак, а значит в один байт (char) влазит число +127/-128, но если знак отбросить то влезет уже от 0 до 255. Обычно знак не нужен. Так что unsigned .
i — это всего лишь имя переменной. Не более того.

Теперь надо проинициализировать порты и UART . Конечно, можно взять и подключить библиотеку и вызвать какой нибудь UartInit(9600); но тогда ты не узнаешь что же произошло на самом деле.

Делаем так:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 int main(void ) { unsigned char i; #define XTAL 8000000L #define baudrate 9600L #define bauddivider (XTAL/(16*baudrate)-1) #define HI(x) ((x)>>8) #define LO(x) ((x)& 0xFF) UBRRL = LO(bauddivider) ; UBRRH = HI(bauddivider) ; UCSRA = 0 ; UCSRB = 1 << RXEN| 1 << TXEN| 1 << RXCIE| 0 << TXCIE; UCSRC = 1 << URSEL| 1 << UCSZ0| 1 << UCSZ1; }

int main(void) { unsigned char i; #define XTAL 8000000L #define baudrate 9600L #define bauddivider (XTAL/(16*baudrate)-1) #define HI(x) ((x)>>8) #define LO(x) ((x)& 0xFF) UBRRL = LO(bauddivider); UBRRH = HI(bauddivider); UCSRA = 0; UCSRB = 1<

Страшна? На самом деле реалного кода тут всего пять последних строк. Все что #define это макроязык препроцессора. Почти та же ботва, что и в Ассемблере, но синтаксис несколько иной.

Они облегчат твои рутинные операции по вычислении нужных коэффициентов. В первой строке мы говорим что вместо XTAL можно смело подставлять 8000000, а L — указание типа, мол long — это тактовая частота процессора. То же самое baudrate — частота передачи данных по UART.

bauddivider уже сложней, вместо него будет подставлятся выражение вычисленное по формуле из двух предыдущих.
Ну, а LO и HI из этого результата возьмут младший и старший байты, т.к. в один байт оно явно может не влезть. В HI делается сдвиг икса (входной параметр макроса) восемь раз в вправо, в результате от него останется только старший байт. А в LO мы делаем побитовое И с числом 00FF, в результате останется только младший байт.

Так что все что сделано как #define можно смело выкинуть, а нужные числа подсчитать на калькуляторе и сразу же вписать их в строки UBBRL = …. и UBBRH = …..

Можно. Но! Делать этого КАТЕГОРИЧЕСКИ НЕЛЬЗЯ !

Работать будет и так и эдак, но у тебя в программе появятся так называемые магические числа — значения взятые непонятно откуда и непонятно зачем и если ты через пару лет откроешь такой проект то понять что это за значения будет чертовски трудно. Да и сейчас, захочешь ты изменить скорость, или поменяешь частоту кварца и все придется пересчитывать заново, а так поменял пару циферок в коде и все само. В общем, если не хочешь прослыть быдлокодером, то делай код таким, чтобы он легко читался, был понятен и легко модифицировался.

Дальше все просто:
Все эти «UBRRL и Со» это регистры конфигурации UART передатчика с помощью которого мы будем общаться с миром. И сейчас мы присвоили им нужные значения, настроив на нужную скорость и нужный режим.

Запись вида 1< Означает следующее: взять 1 и поставить ее на место RXEN в байте. RXEN это 4й бит регистра UCSRB , так что 1< образует двоичное число 00010000, TXEN — это 3й бит, а 1< даст 00001000. Одиночная «|» это побитовое ИЛИ , так что 00010000 | 00001000 = 00011000. Таким же образом выставляются и добавляются в общуюу кучу остальные необходимые биты конфигурации. В итоге, собраное число записывается в UCSRB. Подробней расписано в даташите на МК в разделе USART. Так что не отвлекаемся на технические детали.

Готово, пора бы посмотреть что получилось. Жми на компиляцию и запуск эмуляции (Ctrl+F7).

Отладка
Пробежали всякие прогресс бары, студия переменилась и возле входа в функцию main появилась желтая стрелочка. Это то где процессор в текущий момент, а симуляция на паузе.

Дело в том, что изначально, на самом деле, она стояла на строке UBRRL = LO(bauddivider); Ведь то что у нас в define это не код, а просто предварительные вычисления, вот симулятор немного и затупил. Но теперь он осознал, первая инструкция выполнена и если ты залезешь в дерево I/O View , в раздел USART и поглядишь там на байт UBBRL то увидишь, что там значение то уже есть! 0х33.

Сделай еще один шаг. Погляди как изменится содержимое другого регистра. Так прошагай их все, обрати внимание на то, что все указаные биты выставляются как я тебе и говорил, причем выставляются одновременно для всего байта. Дальше Return дело не пойдет — программа кончилась.

Вскрытие
Теперь сбрось симуляцию в ноль. Нажми там Reset (Shift+F5) . Открывай дизассемблированный листинг, сейчас ты увидишь что происходит в контроллере в самом деле. View -> Disassembler . И не ЫЫАААА!!! Ассемблер!!! УЖОС!!! А НАДО. Чтобы потом, когда что то пойдет не так, не тупил в код и не задавал ламерских вопросах на форумах, а сразу же лез в потроха и смотрел где у тебя затык. Ничего там страшного нет.

Вначале будет ботва из серии:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 +00000000: 940C002A JMP 0x0000002A Jump +00000002: 940C0034 JMP 0x00000034 Jump +00000004: 940C0034 JMP 0x00000034 Jump +00000006: 940C0034 JMP 0x00000034 Jump +00000008: 940C0034 JMP 0x00000034 Jump +0000000A: 940C0034 JMP 0x00000034 Jump +0000000C: 940C0034 JMP 0x00000034 Jump +0000000E: 940C0034 JMP 0x00000034 Jump +00000010: 940C0034 JMP 0x00000034 Jump +00000012: 940C0034 JMP 0x00000034 Jump +00000014: 940C0034 JMP 0x00000034 Jump +00000016: 940C0034 JMP 0x00000034 Jump +00000018: 940C0034 JMP 0x00000034 Jump +0000001A: 940C0034 JMP 0x00000034 Jump +0000001C: 940C0034 JMP 0x00000034 Jump +0000001E: 940C0034 JMP 0x00000034 Jump +00000020: 940C0034 JMP 0x00000034 Jump +00000022: 940C0034 JMP 0x00000034 Jump +00000024: 940C0034 JMP 0x00000034 Jump +00000026: 940C0034 JMP 0x00000034 Jump +00000028: 940C0034 JMP 0x00000034 Jump

00000000: 940C002A JMP 0x0000002A Jump +00000002: 940C0034 JMP 0x00000034 Jump +00000004: 940C0034 JMP 0x00000034 Jump +00000006: 940C0034 JMP 0x00000034 Jump +00000008: 940C0034 JMP 0x00000034 Jump +0000000A: 940C0034 JMP 0x00000034 Jump +0000000C: 940C0034 JMP 0x00000034 Jump +0000000E: 940C0034 JMP 0x00000034 Jump +00000010: 940C0034 JMP 0x00000034 Jump +00000012: 940C0034 JMP 0x00000034 Jump +00000014: 940C0034 JMP 0x00000034 Jump +00000016: 940C0034 JMP 0x00000034 Jump +00000018: 940C0034 JMP 0x00000034 Jump +0000001A: 940C0034 JMP 0x00000034 Jump +0000001C: 940C0034 JMP 0x00000034 Jump +0000001E: 940C0034 JMP 0x00000034 Jump +00000020: 940C0034 JMP 0x00000034 Jump +00000022: 940C0034 JMP 0x00000034 Jump +00000024: 940C0034 JMP 0x00000034 Jump +00000026: 940C0034 JMP 0x00000034 Jump +00000028: 940C0034 JMP 0x00000034 Jump

Это таблица векторов прерываний. К ней мы еще вернемся, пока же просто посмотри и запомни, что она есть. Первая колонка — адрес ячейки флеша в которой лежит команда, вторая код команды третья мнемоника команды, та самая ассемблерная инструкция, третья операнды команды. Ну и автоматический коммент.
Так вот, если ты посмотришь, то тут сплошные переходы. А код команды JMP четырех байтный, в нем содержится адрес перехода, записанный задом наперед — младший байт по младшему адресу и код команды перехода 940C

0000002B: BE1F OUT 0x3F,R1 Out to I/O location

Запись этого нуля по адресу 0x3F, Если ты поглядишь в колонку I/O view, то ты увидишь что адрес 0x3F это адрес регистра SREG — флагового регистра контроллера. Т.е. мы обнуляем SREG, чтобы запустить программу на нулевых условиях.

1 2 3 4 +0000002C: E5CF LDI R28,0x5F Load immediate +0000002D: E0D4 LDI R29,0x04 Load immediate +0000002E: BFDE OUT 0x3E,R29 Out to I/O location +0000002F: BFCD OUT 0x3D,R28 Out to I/O location

0000002C: E5CF LDI R28,0x5F Load immediate +0000002D: E0D4 LDI R29,0x04 Load immediate +0000002E: BFDE OUT 0x3E,R29 Out to I/O location +0000002F: BFCD OUT 0x3D,R28 Out to I/O location

Это загрузка указателя стека. Напрямую грузить в I/O регистры нельзя, только через промежуточный регистр. Поэтому сначала LDI в промежуточный, а потом оттуда OUT в I/O. О стеке я тоже еще расскажу подробней. Пока же знай, что это такая динамическая область памяти, висит в конце ОЗУ и хранит в себе адреса и промежуточные переменные. Вот сейчас мы указали на то, откуда у нас будет начинаться стек.

00000032: 940C0041 JMP 0x00000041 Jump

Прыжок в сааааамый конец программы, а там у нас запрет прерываний и зацикливание наглухо само на себя:

1 2 +00000041: 94F8 CLI Global Interrupt Disable +00000042: CFFF RJMP PC-0x0000 Relative jump

00000041: 94F8 CLI Global Interrupt Disable +00000042: CFFF RJMP PC-0x0000 Relative jump

Это на случай непредвиденых обстоятельств, например выхода из функции main. Из такого зацикливания контроллер можно вывести либо аппаратным сбросом, либо, что вероятней, сбросом от сторожевой собаки — watchdog. Ну или, как я говорил выше, подправить это мест в хекс редакторе и ускакать куда нам душе угодно. Также обрати внимание на то, что бывает два типа переходов JMP и RJMP первый это прямой переход по адресу. Он занимает четыре байта и может сделать прямой переход по всей области памяти. Второй тип перехода — RJMP — относительный. Его команда занимает два байта, но переход он делает от текущего положения (адреса) на 1024 шага вперед или назад. И в его параметрах указывается смещение от текущей точки. Используется чаще, т.к. занимает в два раза меньше места во флеше, а длинные прееходы нужны редко.

1 +00000034: 940C0000 JMP 0x00000000 Jump

00000034: 940C0000 JMP 0x00000000 Jump

А это прыжок в самое начало кода. Перезагрузка своего рода. Можешь проверить, все вектора прыгают сюда. Из этого вывод — если ты сейчас разрешишь прерывания (они по дефолту запрещены) и у тебя прерывание пройзойдет, а обработчика нет, то будет программный сброс — программу кинет в самое начало.

Функция main. Все аналогично, даже можно и не описывать. Посмотри только что в регистры заносится уже вычисленное число. Препроцессор компилятора рулит!!! Так что никаких «магических» чисел!

1 2 3 4 5 6 7 8 9 10 11 12 <

00000036: E383 LDI R24,0x33 Load immediate +00000037: B989 OUT 0x09,R24 Out to I/O location 15: UBRRH = HI(bauddivider); +00000038: BC10 OUT 0x20,R1 Out to I/O location 16: UCSRA = 0; +00000039: B81B OUT 0x0B,R1 Out to I/O location 17: UCSRB = 1<

А вот тут косяк:

1 2 3 +0000003E: E080 LDI R24,0x00 Load immediate +0000003F: E090 LDI R25,0x00 Load immediate +00000040: 9508 RET Subroutine return

0000003E: E080 LDI R24,0x00 Load immediate +0000003F: E090 LDI R25,0x00 Load immediate +00000040: 9508 RET Subroutine return

Спрашивается, для чего это компилятор добавляет такую ботву? А это не что иное, как Return 0, функцию то мы определили как int main(void) вот и просрали еще целых четыре байта не пойми на что:) А если сделать void main(void) то останется только RET, но появится варнинг, что мол у нас функция main ничего не возвращает. В общем, поступай как хошь:)

Сложно? Вроде бы нет. Пощелкай пошаговое исполнение в режиме дизассемблера и позырь как процессор выполняет отдельные инструкции, что при этом происходит с регистрами. Как происходит перемещение по командам и итоговое зацикливание.

Продолжение следует через пару дней …

Offtop:
Alexei78 сварганил плагинчик для файрфокса облегчающий навигацию по моему сайту и форуму.
Обсуждение и скачивание,

Побитовые операции основаны на логических операциях, которые мы уже рассмотрели ранее. Они играют ключевую роль при программировании микроконтроллеров AVR и других типов. Практически ни одна программа не обходится без применения побитовых операций. До этого мы намеренно избегали их, чтобы облегчить процесс изучения программирования МК.

Во всех предыдущих статьях мы программировали только порты ввода-вывода а и не задействовали дополнительные встроенные узлы, например, такие как таймеры, аналогово-цифровые преобразователи, прерывания и другие внутренние устройства без которых МК теряет всю свою мощь.

Прежде, чем перейти к освоению встроенных устройств МК, необходимо научится управлять или проверять отдельные биты регистров МК AVR. Ранее же мы выполняли проверку или устанавливали разряды сразу всего регистра. Давайте разберемся, в чем состоит отличие, а затем продолжим далее.

Побитовые операции

Чаще всего при программировании микроконтроллеров AVR мы пользовались , поскольку она имеет большую наглядность по сравнению с и хорошо понятна для начинающих программистов МК. Например, нам нужно установить только 3-й бит порта D. Для этого, как мы уже знаем, можно воспользуемся следующим двоичным кодом:

PORTD = 0b00001000;

Однако этой командой мы устанавливаем 3-й разряд в единицу, а все остальные (0, 1, 2, 4, 5, 6 и 7-й) мы сбрасываем в ноль. А теперь давайте представим ситуацию, что 6-й и 7-й разряды задействованы как входы АЦП и в это время на соответствующие выводы МК поступает сигнал от какого-либо устройства, а мы, применяемой выше командой, обнуляем эти сигналы. В результате чего микроконтроллер их не видит и считает, что сигналы не приходили. Поэтому вместо такой команды нам следует применить другую, которая бы установила только 3-й бит в единицу, при этом не влияя на остальные биты. Для это обычно применяется следующая побитовая операция:

PORTD |= (1<<3);

Синтаксис ее мы подробно разберем далее. А сейчас еще один пример. Допустим нам нужно проверить состояние 3-го разряда регистра PIND, тем самым проверяя состояние кнопки. Если данный разряд сброшен в ноль, то мы знаем, что кнопка нажата и далее выполняется код команды, который соответствует состоянию нажатой кнопки. Ранее мы бы воспользовались следующей записью:

if (PIND == 0b00000000)

{ какой-либо код}

Однако с помощью нее мы проверяем не отдельный, – 3-й, а сразу все биты регистра PIND. Поэтому даже если кнопка нажат и нужный разряд сброшен, но в это время на какой-либо другой вывод порта D поступит сигнал, то соответствующий быт установится в единицу, и условие в круглых скобках будет ложным. В результате код, находящийся в фигурных скобках, не будет выполняться даже при нажатой кнопке. Поэтому для проверки состояния отдельного 3-го бита регистра PIND следует применять побитовую операцию:

if (~PIND & (1<<3))

{ какой-либо код}

Для работы с отдельными битами микроконтроллера в арсенале языка программирования C имеются , с помощью которых можно изменять или проверять состояние одного или нескольких отдельных бит сразу.

Установка отдельного бита

Для установки отдельного бита, например порта D, применяется побитовая операция ИЛИ. Именно ее мы применяли в начале статьи.

PORTD = 0b00011100; // начальное значение

PORTD = PORTD | (1<<0); применяем побитовую ИЛИ

PORTD |= (1<<0); // сокращенная форма записи

PORTD == 0b00011101; // результат

Эта команда выполняет установку нулевого разряда, а остальные оставляет без изменений.

Для примера установим еще 6-й разряд порта D.

PORTD = 0b00011100; // начальное состояние порта

PORTD |= (1<<6); //

PORTD == 0b01011100; // результат

Чтобы записать единицу сразу в несколько отдельных бит, например нулевой, шестой и седьмой порта B применяется следующая запись.

PORTB = 0b00011100; // начальное значение

PORTB |= (1<<0) | (1<<6) | (1<<7); //

PORTB == 0b1011101; // результат

Сброс (обнуление) отдельных битов

Для сброса отдельного бита применяются сразу три ранее рассмотренные команды: .

Давайте сбросим 3-й разряд регистра PORTC и оставим без изменений остальные.

PORTC = 0b00011100;

PORTC &= ~(1<<3);

PORTC == 0b00010100;

Выполним подобные действия для 2-го и 4-го разрядов:

PORTC = 0b00111110;

PORTC &= ~((1<<2) | (1<<4));

PORTC == 0b00101010;

Переключение бита

Кроме установки и сброса также применяется полезная команда, которая переключает отдельный бит на противоположное состояние: единицу в ноль и наоборот. Данная логическая операция находит широкое применение при построении различных световых эффектов, например, таких как новогодняя гирлянда. Рассмотрим на примере PORTA

PORTA = 0b00011111;

PORTA ^= (1<<2);

PORTA == 0b00011011;

Изменим состояние нулевого, второго и шестого битов:

PORTA = 0b00011111;

PORTA ^= (1<<0) | (1<<2) | (1<<6);

PORTA == 0b01011010;

Проверка состояния отдельного бита. Напомню, что проверка (в отличии от записи) порта ввода-вывода осуществляется с помощью чтения данных из регистра PIN.

Наиболее часто проверка выполняется одним из двух операторов цикла: if и while. С этими операторами мы уже знакомы ранее.

Проверка разряда на наличие логического нуля (сброса) с if

if (0==(PIND & (1<<3)))

Если третий разряд порта D сброшен, то выполняется Код1. В противном случае, выполняется Код2.

Аналогичные действия выполняются при и такой форме записи:

if (~PIND & (1<<3))

Проверка разряда на наличие логической единицы (установки) с if

if (0 != (PIND & (1<<3)))

if (PIND & (1<<3))

Приведенные выше два цикла работаю аналогично, но могут, благодаря гибкости языка программирования C, иметь разную форму записи. Операция!= обозначает не равно. Если третий разряд порта ввода-вывода PD установлен (единица), то выполняется Код1, если нет ‑ Код2.

Ожидание сброса бита с while

while (PIND & (1<<5))

Код1 будет выполняться пока 5-й разряд регистра PIND установлен. При сбросе его начнет выполняться Код2.

Ожидание установки бита с while

Здесь синтаксис языка С позволяет записать код двумя наиболее распространёнными способами. На практике применяются оба типа записи.

Задача: Разработаем программу управления одним светодиодом. При нажатии на кнопку светодиод горит, при отпускании гаснет.

Для начала разработаем принципиальную схему устройства. Для подключения к микроконтроллеру любых внешних устройств используются порты ввода-вывода. Каждый из портов способен работать как на вход так и на выход. Подключим светодиод к одному из портов, а кнопку к другому. Для этого опыта мы будем использовать контроллер Atmega8 . Эта микросхема содержит 3 порта ввода-вывода, имеет 2 восьмиразрядных и 1 шестнадцатиразрядный таймер/счетчик. Также на борту имеется 3-х канальный ШИМ, 6-ти канальный 10-ти битный аналого-цифровой преобразователь и многое другое. По моему мнению микроконтроллер прекрасно подходит для изучения основ программирования.

Для подключения светодиода мы будем использовать линию PB0, а для считывания информации с кнопки воспользуемся линией PD0. Схема приведена на рис.1.

Занятие №2. Переключение светодиода

Занятие №3. Мигание светодиодом

Занятие №4. Бегущие огни

Занятие №5. Бегущие огни с использованием таймера

Занятие №6. Бегущие огни. Использование прерываний по таймеру

Занятие №7. Операторы управления битами

Занятие №8. Реализация ШИМ

Цифровые устройства, например, микроконтроллер может работать только с двумя уровнями сигнала, т.е. ноль и единица или выключено и включено. Таким образом, вы можете легко использовать его для контроля состояния нагрузки, например включит или выключить светодиод. Так же вы можете использовать его для управления любым электрическим прибором, используя соответствующие драйверы (транзистор, симистор, реле и т.д.).Но иногда нужно больше, чем просто "включить" и "выключить" устройство. Поэтому, если вы хотите контролировать яркость светодиода (или лампы) или скорости двигателя постоянного тока, то цифровые сигналы просто не могу этого сделать. Эта ситуация очень часто встречается в цифровой технике и называется Широтно-Импульсной Модуляцией(PWM).

В продолжение темы:
Безопасность компьютера

Вакансия: Full Stack-веб-разработчик Одно из самых популярных направлений в области ИТ – это веб-разработка. Важное место в ней занимают Full Stack-веб-разработчики. Это...

Новые статьи
/
Популярные